Unit 1: Fundamentals of C++
Short Answer Questions:

Q. Write the syntax of writing comments in C++. (Nov 20)
Ans. In C++, single-line comments use //, and multi-line comments are written using /* comment */.

c++ 3T a3l foust 88 // =331 At I w3 Sg-8ds foush /+ foust +/ gu fg i
"M IS |
Q. List various types of operators and their usage. (Nov 22)

Ans. C++ includes arithmetic, relational, logical, assignment, increment/decrement, and bitwise
operators used for performing various computations.

C++ R I3, f9H3 I, IISHIS, fsgurge, Tg/uc®, w3 ficedid Gudcad IS Je I%, /
Y- JEST IS BE I3 A IS|

Q. Data types (Nov 24)
Ans. Data types in C++ define the type of data a variable can hold, such as int, float, char, double, and
bool.

C++ 39 3T oely fog fagugs ggvr J {9 Jd & eSS A AR T e Y Feer 4, e 9
int, float, char, double, ™3 bool |

Q. Continue (Nov 24)
Ans. The continue statement is commonly used in for, while, or do-while loops to bypass
remaining code and re-evaluate the loop condition.

continue AGTHE WH 39 '3 for, while, A do-while @ﬁ?i‘?ﬁﬂiﬁﬁ, 3"1“3(813&33§§33§’4E"T
HI3 § HF Hifowr 7 A/l

Q. When do you need to use continue statement? (Nov 22)
Ans. The continue statement is used inside loops to skip the current iteration and jump to the next cycle.

continue ASSAC B © nied T931 At 3 37 il Hge' fredns & 83 3 BU & wiardt 9o 3 A |

Q. What is need of type casting in C++? (Nov 22)
Ans. Type casting is used to convert one data type into another to ensure correct computations and
avoid data loss or mismatch.

Type casting T €33 ffd IeT 28y & T (R0 Sese 88 i3 7l I 3t A A IEa” I A W3 3
S IHEET A IIS3 1Hfdar 3 Sfonwr 7 Al

Long Answer Questions:

Q. What are operators in C++? Explain the types of operators. How is the precedence and associativity
of operators determined? (Nov 20)

Ans. Operators in C++ are special symbols or keywords used to perform operations on variables and
values. They are essential for performing computations, making decisions, and manipulating data.

Types of Operators:
1. Arithmetic Operators: Used for basic mathematical operations: +, -, *, /, %
Example:a+b,x %y
2. Relational Operators: Compare values and return true/false: ==, l=, > <, >= <=
Example:a>b

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

3. Llogical Operators: Used in decision-making: && (AND), || (OR), | (NOT)
Example: (a>b && b <¢)

4. Assignment Operators: Assign values: =, +=, -=, *= /=, %=
Example: x +=5 (same as x = x + 5)
5. Increment/Decrement Operators: Increase or decrease value: ++, -

Example: i++,--j
6. Bitwise Operators: Operate on binary representations: &, |, A, ~, <<, >>
7. Ternary Operator: A shorthand for if-else: condition ? exprl : expr2

Precedence and Associativity: Operator precedence determines which operator is evaluated first in an
expression. Associativity defines the direction (left-to-right or right-to-left) in which operators with the
same precedence are evaluated. For example, * and / have higher precedence than + and-, and most
operators are left-associative.

C++ f&T Operators HH symbols A keywords Ej@ IS A variables W3 values '3 operations II& B
TI3 AR I5| T operations IIE, SAY BT w3 I § HIled! 936 Ry Agdt Ie I

Operators © famAH":
1. Arithmetic Operators (IIFEST GUIST): Slonr<t IfEST ageehf Ja @33 AR I&: +,-, *, /, %
8T IIS: a+ b, x%y

2. Relational Operators (IBEIHA GUITI): HS' Tt IBET IIE I& W3 true T false fITIS II8 IS:
==, I=, >, < >=, <=
@e€3I9s:a>b

3. Logical Operators (37Ifad GUIT): AV = T& expressions T I3 AT I&: && (AND), | |
(OR), ! (NOT)
8va9a: (a>b&&b<c)

-

4. Assignment Operators (H® fsamrad Gudea): ¥8 3T AN B 3T AT J: =, +=,=, *=, /=, %=
€TII&5: x+=5 (BT x=x+5 T HI=HI J)

5. Increment/Decrement Operators (SD/We™@ SUSTY): % § 1 &8 TUGR A WL IG: ++,--
8T IIS: i++,]

6. Bitwise Operators (fa&dt GUd<q): faaTdt gu f€T operations ITR IS &, |, A, ™, <<, >>
7. Ternary Operator (ﬁf@ﬂ?’f SuUI<eq): if-else E"é?gq: condition ? exprl : expr2

Precedence W3 Associativity:

e Precedence (IIHIY) TR I f fITI operator UfTST TBaT|
e Associativity (ﬁ'C:H]B"') ol 3 fa fia WE@ operators faH for fST evaluate J=at —

left-to-right A right-to-left |
8T g9a: * W3/ T precedence + W3- Wéﬂﬁéﬁl f™33 operators left-associative g€ IS |

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Q. Explain the stages of program execution in C/C++. (Nov 20)

Ans. Program execution in C/C++ involves several stages, from writing code to running the final
executable. These stages ensure that source code is translated into machine-understandable form and
executed correctly.

1. Editing (Writing the Program): The first stage is writing the source code in a text editor or IDE
(like Code::Blocks, Turbo C++, or Visual Studio). The code is saved with extensions .c or .cpp.

2. Preprocessing: The preprocessor processes all preprocessor directives like #include, #define,
etc., before actual compilation. It includes header files and expands macros.

3. Compilation: The compiler translates the preprocessed code into assembly code or object code
(.obj or .o files). It checks for syntax errors during this stage.

4. Assembly: The assembler converts the assembly code into machine code, generating object
files that contain low-level binary instructions.

5. Linking: The linker combines one or more object files with required libraries (like stdio.h,
iostream) to produce a single executable file (.exe). It resolves external references like functions
or variables declared in other files.

6. Loading and Execution: The operating system loads the executable file into memory and starts
execution. The program runs and interacts with system resources as needed.

These stages ensure the transformation of human-readable code into executable programs efficiently
and systematically.

C/C++ &9 Program Execution & yfafanr g8t ugmior €8 et J, farer 82r Aor 33 § vills
TIT AHSEWAT gY ST 3918 d9&" W3 BAG Al 291 &8 988 ger I

1. Editing ('an"H' foyuer): 73 3 ufagst, Wéfaﬁtext editor A" IDE (fA= Code::Blocks, Turbo C++, T
Visual Studio) f&T ffamr Aer 3| £ RIA I3 .c A .cpp extension &S AT 7Er J|

2. Preprocessing (Jt-JRfHAN): Preprocessor A preprocessor STfeddfcer § AR daer J, fie
ttinclude, #define, e | foJ header files §WH€?3N§ macros ?;ST‘EHHT@!EE‘GETE}I

3. Compilation (ahrre’lﬁaa): Compiler preprocessed 33?;5 assembly code Hf object code <o 3=<s
I J (.obj A .0 SES) | f&T UIF™ syntax errors ?;SéTF[*BETE}I

4. Assembly (Wl'ﬁ'HE'JS“T): Assembler assembly code § machine code €T 3<% dav" I, A &%
object files TEEMT IS 1 f low-level binary instructions SEEM IS |

5. Linking (f8fdaT): Linker f8 A @O object files & libraries (fA= stdio.h, iostream) &% fHE™ & &
executable file HE@ETET (.exe)| &g €I&" functions T variables € definition ZgTr I 7 T\ I file
ICERL]

6. Loading and Execution (BfSaT W3 G8™@E"): Operating System executable file & memory fR9 83
I I W3 execution HJ AITT J| TE Y['H system resources &'S HUIS IId TS J|

o 9S8 7T A |

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Q. What are the various Compound Assignment Operators in C++? State the difference between Pre
and Post Increment/Decrement Operations. (Nov 22)
Ans. Compound Assignment Operators in C++ are shorthand notations that combine an arithmetic or
bitwise operation with assignment. They simplify code and improve readability. The main compound
assignment operators include:

e +=—> Adds and assigns: a +=5; is the same asa=a + 5;

e -=—> Subtracts and assigns: a-=3;

e *= > Multiplies and assigns: a *= 2;

e /=-> Divides and assigns: a /= 4;

e %= —> Modulus and assigns: a %= 2;

o &=, |5, M=, <<=, >>= > Bitwise assignment operators
These operators help reduce redundancy in code.

Difference Between Pre and Post Increment/Decrement:
e Pre-Increment/Decrement (++i,--i): The variable is incremented or decremented before its
value is used in an expression.
Example:
inta=5, b;
b =++a; // a becomes 6, thenb =6
e Post-Increment/Decrement (i++, i--): The original value of the variable is used in the expression
before it is changed.
Example:
inta=5, b;
b =a++;//b =5, then a becomes 6
Pre and post operations are often used in loops and expressions requiring controlled value updates.

C++ &9 Compound Assignment Operators:
Compound Assignment Operators g foyE T 3Jiar EJ%EJ?S# a arithmetic A bitwise operation
éassignmentéwmaﬁl @Has’éﬂa'&“@%ﬁmg?@é%l
);TH compound assignment operators o s Ia:
¢ +=>TAFAVARSIIS: a+=5Ta=-a+5THIEII
= > USTTIWAES IIS": a-= 3;
o *= > JIETIIA WHEIS II&": a *= 2;
o /=->IITIANWHAES AT a /= 4;
o %=-> Modulus I WHEIS IIS™: a %= 2;

o &=, |3, A, <<=, >>= > Tag Bitwise assignment operators I&

f&d operators 3F fe0 TIIM & WG IG W3 AHSE RY WH'S Je I5 |

Pre W3 Post Increment/Decrement fegniza:

Pre-Increment/Decrement (++i,—-i): SIS TF value § Ufgst =gremr 7t werfimr Jier J, fag €9
value expression IEEEGEIRESIG]

gvads:

inta=5, b;

b=++a; //UfdBta=6faab=6

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Post-Increment/Decrement (i++, i-): SIETB T Y& value & UIIS' expression R =dfamr AT J, fag
value ff9 318! St 3 At 91
gvags:

inta=5, b;
b=a++; //UfdBTb=5fcda=6

Pre ™3 Post operations WH 39 '3 loops W3 expressions €9 @33 A I& fH8 value ¢ fotifg3 Sar
&5 WU IIo JFe |

Q. Write a C++ program to swap two numbers with and without the use of third variable. (Nov 20)
Ans.

#include <iostream>

using namespace std;

int main() {
int a, b, temp;

// Input two numbers
cout << "Enter two numbers: ";
cin>>a>>b;

// Swap using third variable
cout << "\nSwapping with third variable..." << end];

temp = a;
a=b;
b =temp;

cout << "After swap:a="<<a<<", b="<<b<<endl

// Reset values
cout << "\nEnter two new numbers: "
cin>>a>>b;

// Swap without using third variable
cout << "\nSwapping without third variable..." << end|;

a=a+b;
b=a-b;
a=a-b;

cout << "After swap:a="<<a<<", b="<<b << endl

return O;
}
This program demonstrates two methods of swapping variables:
1. With a third variable: Uses a temporary variable temp to hold the value of one variable during
swapping.
2. Without a third variable: Uses arithmetic operations (addition and subtraction) to swap the
values.
Both methods achieve the same result but are useful in different situations. The second method is
memory efficient but must be used carefully to avoid overflow.

1. 31 R[S 55
for 3313 &9 s WHETE TS temp I3 AT I 7 B 89S ©F value étemporarily Ag
3 JuTr J e I TH T value WHEG 13T Al I

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

2. 3R R 3 fast

for 3313 R Afef3a fquret (A3 w3 we) € €33 393 values T s ged! 13t At J|

T 39 e It 3 foe I6 Ug 24-3Y o83 KT B3aat I I5| T 3" memory efficient
Jer I ug for & =33 7 overflow 3 ST 58 fimis ©F 33 et J1

Q. Write a program to check whether a number is palindrome or not? (Nov 20)
Ans. #include <iostream>
using namespace std;

int main() {
int num, reversed = 0, remainder, original;

// Input number from user
cout << "Enter an integer: ";
cin >>num;

original = num; // Store original number for comparison

// Reverse the number
while (num 1= 0) {

remainder = num % 10; // Get last digit
reversed = reversed * 10 + remainder; // Build reversed number
num /= 10; // Remove last digit

}

// Check if original and reversed are the same
if (original == reversed)

cout << original << " is a palindrome." << end|;
else

cout << original << " is not a palindrome." << end|l;

return O;

}
A palindrome number is one that remains the same when its digits are reversed (e.g., 121, 1331).
This program:
e Takes an integer input from the user.
e Stores the original number.
e Reverses the number using a while loop.
e Compares the reversed number with the original.
e If both are the same, it prints that the number is a palindrome; otherwise, it is not.
This program demonstrates use of loops, conditionals, and arithmetic operations in C++.

Palindrome &89 8 &89 I8 I 1 €8¢ ad& '3 & 6t Ifde Is (A= 121, 1331)1
@U@Gﬁ(program)ﬁ'ﬁ%ﬂ*@?é:

. gﬂ??ﬁaintegerwg_ﬂél

. Original?%%éﬁ?"&é@?él

o while JUT HET &8 59 § §8cT J|

e Reversed &89 § Original 399 &8 386" dae I

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

o AR &g fodd g% 3 fife ager I fa fog 59 palindrome I, &t 3t ST I 3 fog
palindrome St I
feg 79 loops, conditionals W3 arithmetic operations € €33 & C++ {9 feurGer I

Q. What is the meaning of scope of a variable in C++? lllustrate with an example. Write in detail about

Pass by Value and Pass by Reference. (Nov 22)

Ans. Scope of a variable refers to the part of a program where the variable is accessible or can be used.

In C++, scopes are categorized as:
1. Local Scope: Variables declared inside a function or block and accessible only within that block.
2. Global Scope: Variables declared outside all functions and accessible throughout the program.
3. Block Scope: Variables declared within control statements like if, for, or {} blocks.

Example:

#include <iostream>

using namespace std;

int x = 10; // Global scope

void show() {
intx =5; // Local scope
cout << "Local x: " << x << endl;

}

int main() {
show();
cout << "Global x: " << x << endl;
return O;

}

Pass by Value vs. Pass by Reference:
e Pass by Value: A copy of the variable is passed to the function. Changes made inside the function
do not affect the original variable.
void func(int x) {x=x+5; }
e Pass by Reference: The actual variable is passed using reference (&). Changes inside the function
affect the original variable.
void func(int &x) {x=x+5; }
Use pass by reference when you want to modify original values or improve performance by avoiding
copies.

SIMES T Scope: TIMES T scope 3 I= I I o IR ST GA STES § R A ST 7 Ao
3 A eI 7 Aaer I c++ fET g 3o ot & 3 et 3
1. Local Scope (HE'&H HIHY): 29SS 7 faR function A block &9 f3a@wg i3 Aer I W3
frae Bt @ ieg It eafanr 7 Haer I
2. Global Scope (IBEH HHT): TIMES 7 AS functions 3 TIT fSIBn Sz AT I w3 U

eI ffe Gussa der J|
3. Block Scope (H®™ HIHT): 2IMES 1 if, for, A {} TI4 statements f£T 33w J& a5 v3
@?ﬁ"blocks &g It eafanr 7 Heer I
gTraas:

-

#include <iostream>
using namespace std;

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

int x = 10; // Global scope

void show() {
intx =5; // Local scope
cout << "Local x: " << x << endl;

}

int main() {
show();
cout << "Global x: " << x << endl;
return O;

}

Pass by Value vs Pass by Reference

Pass by Value (IJEB‘EI"TNTHEIW): for f&9 function ?;sézﬂmawér copy &3t A<t 31 Function K9
JEi ITAEM HS 2IES & Y3 &t Sge|

void func(int x) {x=x+5; }

Pass by Reference (I2®" Il UH d9&7): foH €9 function & SIMES T 9878 (&) fe3m Arer I
Function ﬁaé)ﬁm@ﬁrwé@mﬁaéﬁél

void func(int &x) {x=x+5; }
fa@ I3 Tt Pass by Reference?

o < 3H 4B 3T S IS 9o Tge I
o T 3HI copy IE'8E 3 FUTT TR J (YTIHG TURE B8 |

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Unit 2: Control Statements and Functions
Short Answer Questions:

Q. What do you mean by if-else ladder? (Nov 22)
Ans. An if-else ladder is used to evaluate multiple conditions sequentially, executing the block of the first
true condition.

if-else ladder IE HI' $ BIM3'd AgE Y I3 Arel I w3 A & 793 § A9 3 ufas' Ho ufenr
AT J, OFTT o8 5% 98 AieT J|

Q. What is the advantage of switch statement over If-Else statement? (Nov 20)
Ans. The switch statement is more readable and efficient when handling multiple discrete values of a
single variable.

switch statement 8o It 22 T FE WHIT-38I U & HIBE 28 e UF oW w3 YFemst
I I3

Q. Global Variable (Nov 24)
Ans. A global variable is declared outside all functions and is accessible throughout the entire program.

Global variable 89 2J1eEs Jet I 7 A Sarat 3 Srgg Wi ISt At I w3 Y3 YA K9
SumEg Ifd<t I

Q. Static variable (Nov 24)
Ans. A static variable retains its value between function calls and is initialized only once.

Static variable ffa W TS gt I 1 STHS TS fegarg WUt i3 AIS o Juet I w3 fige
i =<t It fefermsraa It 31

Q. Protected (Nov 24)
Ans. protected is an access specifier that allows a class member to be accessed by the class itself and
its derived classes.

protected fI access specifier J&7 I 7 oA I8H A= § OH S8 A w3 @A 3 fosdt I8t fagdies
SSTH T WIA A F9e T wirfamir fider J|

Q. Write a program to find the mean of 5 numbers. (Nov 20)
Ans. #include <iostream>
using namespace std;
int main() {
floata, b, ¢, d, e, mean;
cin>>a>>b>>c>>d>>e;
mean=(a+b+c+d+e)/5;
cout << "Mean =" << mean;
return O;

}

Long Answer Questions:

Q. Explain the use of functions and its types. (Nov 24)

Ans. Functions in C++ are blocks of code designed to perform specific tasks. They help in modularizing
the program, promoting code reusability, and making it easier to test, debug, and maintain.

Uses of Functions:
e Code Reusability: A function can be called multiple times in a program.

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

e Modularity: Breaks down a complex program into manageable sections.

e Improved Readability: Each function performs a specific task, making the program easier to
understand.

e FEase of Maintenance: Modifying one function doesn't affect others.

Types of Functions:
1. Library Functions: These are built-in functions provided by C++ libraries, such as sqgrt(), pow(),
cin, and cout.
2. User-defined Functions: These are functions created by the programmer to perform specific
tasks.
With no return & no parameters:
void display() { cout << "Hello"; }
With return & no parameters:
int getValue() { return 10; }
With return & parameters:
intsum(int a, intb) {returna +b;}
Functions enhance program structure and are essential for large-scale development. Proper use of
function types ensures efficient and clean coding practices.

C++ f&8 Functions: Functions 89 93 © block I& I& 1 fIA fsaufas fH & 596 B8t Se7¢ He I5|
WHS S8 IS |

Functions é@lﬂﬂm (Uses of Functions):

« Code Reusability (33 € gaa* 93): < Function $ & & & 13 A Hae" I

e Modularity (HS18S F='8@%"): <3 YaoH § 8-8 [[Rg Z3e|

o Readability TO"Eet I: IF Function B ¥H X FIer I friA &% U9ITH AHSE &9 WS
I I

« Maintenance WH'S SETl J: f¥ Function f&T 3EEIH 96 & JJ Functions lﬁﬁ?ﬁ
g<|

Functions ©M faAHT (Types of Functions):
1. Library Functions (8"‘@%31&3’&?5):
C++ ﬁega’*fsq*aéé@ Functions, fA=:
e sqrt() - TIIHS
e pow()-W3
e cin, cout — fEsye/ mrGeyc
2. User-defined Functions (S339'd @8 =72 J):
grid ed" f6durg3 i BE S8 H Functions |

Examples (@€ T3&1):
@ Return & I, & Jt Parameters:

void display() {
cout << "Hello";

}

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

@ Return I, Ud Parameters &F JT:

int getValue() {
return 10;
}
@ Return T I W3 Parameters T JT:

int sum(int a, int b) {
return a + b;

}

HEY fS8: Functions YIIE™H € €70 & HO'IC I6 W3 3 YHd< 38 Sg3 89ddl ge Ia | Functions
T At @93 A'e, ANSTd W3 BJ9% 7 AdE 98T a3 fBys &g Hee gt J1

Q. Write short note on parameter passing in functions. (Nov 20)

Ans. Parameter passing in C++ refers to how arguments are sent to functions when they are called. It
allows functions to accept input values and optionally modify them. There are two primary methods of
parameter passing in C++:

1. Pass by Value:
e Inthis method, a copy of the actual argument is passed to the function.
¢ Any changes made to the parameter inside the function do not affect the original variable.
e Itissafe, as original data is protected.
Example:
void update(int x) {
x =x+5; // only local x is changed

}

2. Pass by Reference:
e Instead of copying, the actual memory address of the argument is passed using reference (&).
e Changes made in the function do affect the original variable.
e Useful when the function needs to modify input or avoid unnecessary copying (especially for
large objects).
Example:
void update(int &x) {
X =x+5; // original x is changed

}

Conclusion: Choosing between pass by value and reference depends on whether the original data needs
to be modified. C++ also supports pointers as an alternative way to pass by reference, offering more
control in memory management.

C++ f<T Parameter Passing (ﬂ?ﬂ-ﬂ?‘d 1-I"'f"F'I'?T): C++ <9 Parameter Passing " Wd¥g J fa fad
arguments (f€3 I8 ¥®) B Function § I8 II AX 37 A I&| & Functions & feaue 8 w3
Hgg3 Uz 3 s § 35018 596 ©f Ags3 e J|

C++ ﬁ?é)j&ﬁaaﬁ:

1. Pass by Value (H& It 3H="):
. @HB@Q@EargumentéﬁaaﬂﬂFuncﬁonégﬁTH"@él
. Func‘u’on@W@?%E@Wtﬂvariable?m?ﬁﬁwgél
o g Itz Jer 3 faBfa wigt 37 gaftmiz Ifder I

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

@ BTIIs:
void update(int x) {

x = x + 5; // THIS x Tt et f*9 g™
}

2. Pass by Reference (T2 Il SHEY):
o foA 33 ST, argument T WMt location (address) Function §3FfrTFFE"TET & T eI3 3|

e Function € wEd I3 A'E T8 STBM WHS! variable & Ygrfe3 998 95|
o Funcﬁonﬁinputémmﬂél
o T ¥SObject ©F it T8 3 HOT I2|
@ BvIds:
void update(int &x) {
x:x+5;//VH'FI'<V>"Txnowchanged
}

&3 (Conclusion):
. ﬁWB‘E"éBE@B?EﬁEW, 31 Pass by Value 33|
o 1 3IHTIH AIST I=- A efficient code TIIET IL, 3 Pass by Reference TI3 |
Q C++ feT pointers ©F TI3 I & reference T I & values pass SIS AT ATt I, =

memory management '3 J9 control fe& TS|

Q. What is the difference between a while and a do while loop? Explain with examples. (Nov 22)
Ans. In C++, both while and do-while loops are used for repeating a block of code as long as a specified
condition is true. However, they differ in how and when the condition is evaluated.

while Loop:
e The condition is checked before the loop body executes.
e If the condition is false initially, the loop body may never execute.
Syntax:
inti=1;
while (i <= 3) {
cout<<i<<"™
i++;
}
Output: 123
do-while Loop:
e The loop body is executed at least once, regardless of the condition.
e The condition is checked after executing the loop body.

Syntax:

inti=1;

do {
cout<<ig< "
i++;

}while (i <= 3);

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Output: 123

Key Difference:

e while loop: Entry-controlled (condition checked first).

e do-while loop: Exit-controlled (condition checked after execution).
Use do-while when the loop must run at least once, such as in menu-driven programs or user input
validation.

C++ f&8 while W3 do-while Y
C++ fST while W3 do-while U €= RS AF € block & TITEE BEI TI3 He I AT 3o A 3t It
condition true IfJST I| YT BIF f&T condition check TS T IIT 4T e J|

while Loop:
e Condition Ufg& check i3t Aet I

o ™ condition B 3 hi false =, 3* loop © WEIH™ code foa Tt <t execute &t gevl

x Syntax:

inti=1;

while (i <= 3) {
cout<<ig< "
i++;

}

& Output:

123

do-while Loop:
o Loop body Ufg® f&d @St execute I J, < condition false I2

e Condition aTg f&T check Ejﬁél

x Syntax:
inti=1;
do{
cout << i <<
i++;
}while (i <= 3);
& Output:
123

non,
’

HY i3 (Key Difference):

Feature while Loop do-while Loop

Condition Check (Entry- e &9 (Exit-Controlled)
Controlled)

Execution oA EmEg wee 19

Guarantee

AE AISUNIS T US™ | 52 code B =t IHEE Tgdt J2 (A I menu-

©<H (Use Case)
J2 driven programs)

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Q@ GUTIITS™ (When to Use): = do-while loop § 88 =If3mr Fier I fid loop Wa-wie & =<t
TEES I I=, TR user input validation A menus &1

Q. Differentiate between the following: (Nov 20)

a) Formal and actual arguments

b) Call by value and Call by reference.

Ans. a) Formal and Actual Arguments:

Formal arguments are variables listed in a function's definition that receive values when the function is
called. Actual arguments are the real values or variables passed to the function during the function call.
Example:

void add(int a, int b); // a, b are formal arguments

add(5, 10); // 5, 10 are actual arguments

Formal arguments exist only within the function and are treated like local variables. Actual arguments
are used in the calling function. The values of actual arguments are copied or referenced depending on
the parameter passing method used.

b) Call by Value and Call by Reference:

In call by value, a copy of the actual argument is passed to the function. Changes made inside the
function do not affect the original variable.

Example:

void modify(int x) { x=10; }

In call by reference, the address (reference) of the actual argument is passed. Changes made in the
function do affect the original variable.

Example:

void modify(int &x) { x = 10; }

Call by value is safe but doesn't allow modification of original data, while call by reference is more
efficient and allows in-place changes.

a) Formal W3 Actual Arguments: Formal arguments 89 variables g€ I& H function B definition ffg
&8 AR I& W3 function call AN fedat & value THBTT J1 - Actual arguments 8T WHE! values HF
variables ﬁ@%ﬁfuncﬁon ?;'5call gae AR i3 A I&|

gTads:
void add(int a, int b); // a, b- formal arguments
add(5, 10); // 5, 10- actual arguments

Formal arguments function © wied I Ifde I& W3 local variables @QTSH I IS | Actual arguments
calling function TS0 TI3 A I&| Values pass SIS T 3T (copy A reference) parameter passing
technique '3 &89 Sger I

b) Call by Value W3 Call by Reference: Call by value f&9 actual argument €t copy function & f&3t =<t

J1 Function ST o3 918 IS original variable '3 WHI &It FIem|
gTads:

-

void modify(int x) { x=10; }

Call by reference fe9 variable T address (reference) function ?;'5 f&3r Aer I Function &9 a3
IETISBMIT actual variable ?;sqarﬁzaaé\wam

gTads:

void modify(int &x) { x = 10; }

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Call by value Walﬁoriginal value échange &t g Call by reference efficient §M§direct|y
value f€9 change I I

Q. Write difference between call by value, call by address and call by reference explain with the help
examples. (Nov 24)

Ans. In C++, function arguments can be passed in three main ways: call by value, call by address, and
call by reference. These differ in how the function accesses and modifies data.

1. Call by Value:
e Acopy of the variable is passed to the function.
e Changes inside the function do not affect the original variable.
Example:
void modify(int x) { x=10; }
Calling modify(a) does not change the value of a.

2. Call by Address:
e The memory address of the variable is passed using pointers.
e The function can modify the original value by dereferencing the pointer.
Example:
void modify(int *x) { *x = 10; }
Calling modify(&a) changes the value of a.

3. Call by Reference:
e Areference (alias) of the variable is passed using &.
e Changes inside the function directly affect the original variable.
Example:
void modify(int &x) { x = 10; }
Calling modify(a) updates the value of a.

Summary:
Type Can Modify Original? Syntax Used
Call by Value No func(int x)
Call by Address Yes func(int *x)
Call by Reference Yes func(int &x)

C++ f&9 Function Arguments U™ 996 © f3& 3d1a:
C++ T function arguments f3& Wy 3T &5 UH a3 AT I&: Call by Value, Call by Address, W3

Call by Reference | feg f3& 3319 data & access W3 modify F36 R 24-24 31 &% SH 9T I |

1. Call by Value (tl'&'?if’&'a"ﬁ‘f):

e Variable T f&& copy function ?;ST‘EVB:TH*E"TE}I

e Function %%WB’SWoriginal variable §q3r&3?>—<ﬂaae°mr|
gTrgas:

-

void modify(int x) { x=10; }
modify(a)?;ScallaEl?S'E?aE'rTvalue change ?TcﬁEjE"TI

2. Call by Address (WSS H Iaih):
e Variable € memory address function § pointer It 3T AT I

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

e Function pointer § dereference 94 original value ?;5 change g9 AT J|
gTaas:

-

void modify(int *x) { *x = 10; }
modify(&a) ?;5 call II& '3 a ©f value change J AT I

3. Call by Reference (I<& grdl):
e Variable € reference (alias) function éﬁ?ﬁ'i?él

e Function f&T I8 31T seedhi original variable ?;51-13"'@3’3(3@@
gTaas:

-

void modify(int &x) { x = 10; }
modify(a)écall&%??'?aé’]’value change J A I

Huy33'3:
3Jtar Original Value Change J€I? Syntax
Call by Value &t func(int x)
Call by Address It func(int *x)
Call by Reference It func(int &x)

Q. Write a program to print table of a number. (Nov 24)
Ans. #include <iostream>
using namespace std;

int main() {
int num;

// Input from user
cout << "Enter a number to print its table: ",
cin >> num;

// Print table using loop

cout << "\nMultiplication Table of " << num << ":\n";

for (inti=1;i<=10; i++){
cout<<num<<"x"<<i<<"="<<num *i<<endl;

}

return O;

}
This program prints the multiplication table of any number provided by the user.
Steps involved:

1. The program begins by asking the user to enter an integer.

2. ltusesa forloop that runs from 1 to 10.

3. Ineach iteration, the number is multiplied by the loop counter (i), and the result is printed in a

standard format.

Sample Output for input 5:
5x1=5
5x2=10

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

5x10=50
This program demonstrates use of cin for input, cout for output, and for loop for iteration — making it
a basic yet essential C++ example for beginners.

f&g Program ﬁﬁﬁ%ﬂ?iﬁﬁlﬁﬁ (Multiplication Table) ﬁ{?ﬁ?éﬁgﬁ?gﬂ‘?ﬁ?ﬂ*@
Jl
aH 996 T dTH:
1. Programwgmgﬂagﬁawﬁa(integer)FTHETETI
2. fag S for loop TBE I A 13 10 ST AT I
3. IJ iteration &9, 8T 599 loop © counter (i) & I 3™ AT I W3 &3 8 standard
Toe fig e drarer 3|

€995 (Input = 5):

5x1=5
5x2=10
5x3=15

5x10=50

fer Program €8 f89 Concepts TI3 IW I&:
. cin%@ﬂ?ginputggw
e cout— “FQE"JE’@HT@EEE'T
e forloop > 13 10 3 iterate IIS JE

feg f&a 993 It WS W3 HES! C++ © €936 I H Beginners 381 SJT B3adl J|

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Unit 3: Object Oriented Programming
Short Answer Questions:

Q. Why C++ is called object-oriented programming? (Nov 20)
Ans. C++ supports concepts like classes, objects, inheritance, and encapsulation, which makes it an
object-oriented programming language.

C++ 2T classes, objects, inheritance W3 encapsulation TIIM feRmsT=" e Is, # ferd B
object-oriented programming language HF@WGSI

Q. What is operator overloading? (Nov 20)
Ans. Operator overloading allows redefining the meaning of operators for user-defined data types like
classes.

Operator overloading & HSIE WHT user-defined data types (A= S classes) B8 Gudeat S Ufgsar §
T I f6dua3 ad Ade I

Q. Destructor (Nov 24)
Ans. A destructor is a special member function that is automatically called when an object is destroyed
to free resources.

Destructor f8& ¥ member function I I 7 fIH object @ SHES IJT AN WUE WY IS Jet I w3
AHATS (resources) éH"&"TaE!E”TETI

Q. Friend class (Nov 24)
Ans. A friend class can access the private and protected members of another class in which it is declared
as a friend.

Friend class @J 8™ It I 1 oA I IB™H = private W3 protected AT & IR A 53 Aol J, 7
fa 87 67 12T friend T 3BT 3T et J=|

Q. Function overloading. (Nov 24)
ans. Function overloading allows multiple functions with the same name but different parameter lists
within the same scope.

Function overloading €3 & &t I8t functions & e scope fRE Ufgs™H3 g6 € wifmr it I,
UJ 83 € parameter lists TH-2H JE T IS |

Q. When do we need iterator? (Nov 22)
Ans. Iterators are used to traverse containers like arrays, vectors, or lists in a standard and consistent
way.

lterators ?;'5 arrays, vectors A lists @341 containers ﬁaéuﬁzémwéeaﬂmweaﬁwrw?n

Q. What is the usage of flush in C++ programming? (Nov 22)
Ans. flush is used to force the output buffer to write all data to the console or file immediately.

flush & output buffer T T ANIIST § 393 console ' file &9 foueQs ot e g AT J|

Q. Is destructor overloading possible? If yes then explain and if no then why? (Nov 22)
Ans. No, destructor overloading is not allowed in C++ because a class can have only one destructor with
a fixed signature.

&, C++ 2T destructor overloading B wrami &t I fagfs fia swr &9 fage f8a It destructor I
Heral I fm = signature fixed EjE"TE}I

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Q. Define data abstraction. (Nov 22)
Ans. Data abstraction means exposing only essential features while hiding internal implementation
details in a program.

Data abstraction € WJH I f Ja[H €T fae wgdt fermse § ferr@er wi3 wiegdt implementation
$8ugeE|

Q. How Multilevel Inheritance is different from Multiple Inheritance? (Nov 22)
Ans. Multilevel inheritance involves a class derived from another derived class, while multiple
inheritance means a class inherits from two or more base classes.

Multilevel inheritance fR8 & a&H, Th f39des agH I feors 8 I
Multiple inheritance €9 ¥ & © A foH 3 €0 base classes 3 fTaAz <1 J|

Long Answer Questions:

Q. Explain characteristics of Object-Oriented Programming. (Nov 24)

Ans. Object-Oriented Programming (OOP) is a programming paradigm based on the concept of
"objects", which can contain data and code. It helps in organizing complex programs, promoting
reusability, scalability, and maintainability. The key characteristics of OOP are:

1. Encapsulation: It binds data and functions into a single unit called a class. It hides internal details
and exposes only necessary parts through access modifiers (public, private, protected).

2. Abstraction: It allows programmers to focus on essential features without dealing with
background complexity. Classes can expose required functionality while hiding implementation
details.

3. Inheritance: It enables a class (derived class) to inherit properties and behaviors from another
class (base class), allowing code reuse and hierarchical classification.

4. Polymorphism: It allows objects to take multiple forms. This can be achieved through function
overloading, operator overloading, and virtual functions. It enables one interface to control
access to different types of objects.

5. Modularity: Programs can be divided into smaller, independent units (classes and objects),
which makes testing and maintenance easier.

6. Reusability: Once a class is written, it can be reused across programs or extended through
inheritance without rewriting code.

OOP improves software design by making it more structured and close to real-world modeling.

Object-Oriented Programming (OOP) $I? Object-Oriented Programming (OOP) A programming
SIT I A "objects" WO '3 f&IZT FITT J| 8T objects RT data (37" W3 code (STHS/IINA) I
ASS IS | 00P T 233 I3a 8N 3 &G YAITH WHGT &8 A8, To'd 293 W3 TUE 7 HaT I6 |

OOP ©Mif v feRm3™=r:

1. Encapsulation (fﬁé‘l-l'f__lﬁ'ﬂ??): foeg 3em w3 Samat § S It wfae (class) ifo Ager J| fog wiegdt
Heardl ?;Njo(' CALELE ﬂgdﬂl ﬁ'ﬂ*Eﬁ@WW@E’ral O A= public, private, protected access
modifiers € I3 |

2. Abstraction (WEHSEH®): fog Tg3arg § fAge Agdl Areardl GussY agerger I w3 fusd aH
é’]’ﬂ'f?’&?"?;?@ﬂ@?él &r IGEE ﬁacar@driving functionality é‘bﬂ'H"ﬂaE"Ta, Ud engine E”]'V)Eg?ﬁ
gerec &t

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

3. Inheritance (ﬁ?ﬁaﬁéﬁ): fere aate f¥a class (Derived class) gﬁclass (Base class) ?@E(propert‘ies)
w3 feEI™T (functions) B A J| o foT Toar 33 fous St 33 WG J|

4. Polymorphism (UEHIfemH): fog B object § &t gu Fg =33 & Ags3 fer |1 e

Function overloading, Operator overloading, Virtual functions nfe|

5. Modularity (ﬂ?’fzm?ﬂ) faR = program ?;Sééééﬁﬁ?’){* (classes, objects) R <dgsr A fawsar
WEI SH IIe I&| 2 8T testing M3 maintenance WHS SET8er I

6. Reusability (FERfEfEA): A class fx =g Sevd At J, @I Smie &9 S programs fEg Taar
If3m AT HaET I A inheritance It @O A AT I

&3 (Conclusion): OOP programming & few=AfE3, TIaT TTITUI W3 WHS! &8 HIBWI
Feger I3 o WHS FI3 & AHE § code fRT fomrGer 3|

Q. Explain constructor overloading. (Nov 24)

Ans. Constructor overloading in C++ is a feature that allows a class to have more than one constructor
with different sets of parameters. It enables objects to be initialized in multiple ways using the same
constructor name but with different argument lists.

Constructors are special member functions that are automatically called when an object of a class is
created. Overloading constructors improves flexibility and reusability of code.

Example:
ttinclude <iostream>
using namespace std;

class Student {
intid;
string name;

public:
// Default constructor
Student() {
id=0;
name ="Unknown";

}

// Parameterized constructor with one argument
Student(int i) {

id=1i;

name = "No Name";

}

// Parameterized constructor with two arguments
Student(int i, string n) {

id=1i;

name =n;

}

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

void display() {
cout << "ID: " << id << ", Name: " << name << endl;

}
L

int main() {
Student s1;
Student s2(101);
Student s3(102, "Alice");

s1.display();
s2.display();
s3.display();

return O;

}

In this example, the Student class has three constructors, each serving different initialization needs. The
compiler differentiates them based on the number and type of parameters.

Constructor Overloading in C++ (F&HGACT @?Bﬂ'rﬁm)
C++ f&g Constructor Overloading €& feRm3™ I 1 & class & 2d-24 IJHfomif &3 objects & initialize

HG?SE;THQBB’T‘E"E"TETI for R 8 & @3 et constructors 3%@8’6’48@8??@ parameters Y-
Sy Je I&|

Constructors 89 special member functions I I& 1 object Fe& AR Wenfed I%e I&| Constructor
overloading & code ﬁ%’ﬂexibility“@reusability@:lé’ral

8¥II& (Example):

-

#include <iostream>
using namespace std;

class Student {
intid;
string name;

public:
// Default constructor
Student() {
id=0;
name = "Unknown";

}

/) e argument 8 constructor

Student(int i) {
id=1i;
name = "No Name";

}

//) arguments <& constructor
Student(int i, string n) {

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

id=1i;
name =n;

}

void display() {
cout << "ID: "<<id << ", Name: " << name << endl;
1
2

int main() {
Student s1;
Student s2(101);
Student s3(102, "Alice");

s1.display();
s2.display();
s3.display();

return O;

}

HHS™S (Explanation in Punjabi):
@LI@EE{ example @ Student class © f3& constructors I&:
1. Default Constructor — gt & argument RIS
2. Single Parameter Constructor — fHI< id g I
3. Two Parameter Constructor — id W3 name @< &< J|
C++ T compiler f7T constructors & €& € parameters € [ITEST w3 type © wag IygeT J| fig
feature object initialization éwh{?ﬂexible 8’8"@?’?”

Q. What is a Copy Constructor and when is it called? (Nov 22)
Ans. A copy constructor is a special constructor in C++ used to create a new object as a copy of an
existing object. It has the following general syntax:

ClassName(const ClassName &old_object);

It takes a reference to an object of the same class as an argument. The main purpose of a copy
constructor is to perform a deep or customized copy of object data, especially when the class contains
pointers or dynamically allocated memory.

When is a Copy Constructor Called?
A copy constructor is called in the following scenarios:
1. When an object is initialized using another object:
ClassName obj2 = obj1;
2. When an object is passed by value to a function.
3. When a function returns an object by value.
4. When an object is explicitly copied.
ClassName obj2(obj1);

Example:
class Demo {
public:

int x;

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Demo(int val) { x = val; }

Demo(const Demo &d) {x =d.x; } // Copy constructor
Iy
If you don’t define a copy constructor, C++ provides a default shallow copy. However, for classes
managing resources like files or dynamic memory, a user-defined copy constructor is necessary to avoid
memory issues.

Copy Constructor in C++ (It I&HSACT)
C++ &9 Copy Constructor 8 feRH constructor ger I 7 A Hge™ object T 598 I &= object

ge8T B @I AT I A S syntax BT 3
ClassName(const ClassName &old_object);

&I constructor f&d reference @Er?r@ﬁ It class @ object | for B ¥ 821 dynamically allocated
memory T pointers @& objects I deep copy EEI?FEFETE}I

Copy Constructor 2 Call EjE" G
Copy constructor 96 e AfESMT fZT call Ier 3

1. Object Initialization &™3:

ClassName obj2 = obj1;
2. Object & Function & pass 93 AN (by value)

3. Function §Object return 9& AX (by value)

4. Explicit Copy age I8:
ClassName obj2(obj1);

8¥II& (Example):

-

class Demo {
public:
int x;

Demo(int val) { x = val; } // Parameterized constructor

Demo(const Demo &d){ // Copy constructor
X =d.x;
}
2
AS anft (Shallow Copy) vs 3t amft (Deep Copy):
H 3H Copy Constructor define &It g%, 3t C++ ¥ default shallow copy ST fider | Ug A< 3

dynamically allocated memory A pointers EEB’GET@, 318 user-defined copy constructor B"ﬂ')-ﬁEjET
J &t 3T memory leak AF undefined behavior I AeeT J|

HT: Copy constructor object Tt safe M3 customized &S TG BE I3 AT J, I H ga A
object f&8 heap memory T pointers g‘iéa?sl

Q. Explain the following: (Nov 20)
a) Polymorphism in C++ (Nov 20)
b) Classes in C++

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

c) Data Abstraction in C++
d) Inheritance in C++
Ans. a) Polymorphism in C++: Polymorphism means “many forms” and allows the same function name
or operator to behave differently based on context. In C++, it is mainly of two types:
e Compile-time polymorphism (function/operator overloading)

e Run-time polymorphism (using virtual functions and inheritance)
For example, a function named display() can show different outputs based on the parameters
passed.

b) Classes in C++: A class is a user-defined data type that serves as a blueprint for creating objects. It
encapsulates data (variables) and functions (methods) into a single unit. Example:
class Student {
public:
int roll;
void show() { cout << roll; }

L

c) Data Abstraction in C++: Abstraction means showing only essential features and hiding the internal
details. In C++, abstraction is achieved using classes and access specifiers (private, public, protected). It
helps in building secure and clean code by exposing only necessary parts of an object.

d) Inheritance in C++: Inheritance allows one class (child/derived) to acquire the properties and
behavior of another class (parent/base). This promotes code reusability and supports the concept of
hierarchical classification.
Example:

class Car : public Vehicle { };

a) C++ f<9 Polymorphism (&ﬁvmaﬁmr): Polymorphism ET“{GHQ'ETET"HE'TQU" | fog & T function
H*operator?;sev'bf-éhf context T30 TH-3Y 1 &8 TI3T ©f Wigmi fideT J|
C++ ﬁgﬁaéq@?éééa?s:
1. Compile-time Polymorphism — Function W3 Operator Overloading I |
2. Run-time Polymorphism — Virtual Functions W3 Inheritance I |
€T 935: ¥ display() function RH-2Y arguments @ W'd '3 @4- output © AT J|

b) C++ f&T Classes (IB™H): Class f8d user-defined data type I I H object SE'GE 8 blueprint T
I It J| 8T data (variables) W3 functions (methods) §@a@a@rﬁ€aﬁ€r|
gTads:

-

class Student {
public:
int roll;
void show() { cout << roll; }

L

c) C++ f&g Data Abstraction (3" WIHEIAH®): Abstraction T WIH J [fHIe Hgd Areardt fouret
< W3 wiegs! Afes3T § garfanr 7|

C++ @9 abstraction § achieve I B classes W3 access specifiers (private, public, protected) 33
"2 I&| £ code ?;SHEV'H”)B“{?H’EHE@ETE}I

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

d) C++ f€T Inheritance (f:‘.'?ﬁﬁé:ﬂ'): Inheritance I & class (derived/child) gﬁclass (base/parent)
it properties W3 functions ?;SWNE"QéTal

f&H &8 code reuse Iet I w3 g Irfegrael fAAeH g8 9 Hee sl J1

ISSAGELY

-

class Car : public Vehicle { };

Q. Define Classes and Objects. Explain the different method to accessing members of class using an
example. (Nov 20)

Ans. A class is a user-defined data type in C++ that serves as a blueprint for creating objects. It groups
related data members (variables) and member functions (methods) into a single unit.

An object is an instance of a class. It is created to use the properties and behavior defined by the class.
Multiple objects can be created from a single class, each having its own copy of data members.

Example:
ttinclude <iostream>
using namespace std;

class Student {
public:
int roll;
string name;

void display() {
cout << "Roll No: " << roll << ", Name: " << name << end|;

}
L

int main() {
Student s1; // creating object

// Accessing class members
sl.roll = 101;

sl.name = "Rahul";

s1.display(); // accessing function

return O;

}

Ways to Access Members of a Class:
1. Using dot operator (.) for normal objects (as shown above).
2. Using pointer to object with arrow operator (->):

Student *ptr = &s1;

ptr->display();

These methods allow controlled access to class members and support OOP principles like encapsulation
and abstraction.

C++ f€T Class 3 Object it g& I&?
Class C++ f&T & user-defined data type It I 1 objects SETQE 8 ¥ blueprint @1 aH <t J|
o 1S9 related data members (variables) 3 member functions (methods) ffa& a3 A I& |

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Object f&& class € instance ﬁ?al Object class f€T define SlIZM properties W3 behaviors (SSHG) §
TI3E Y gerfowr AT J| 8 class 3 T objects =8 A7 Aale I M3 I object T WS 376197
copyﬁé’fél

gTags:

-

#include <iostream>
using namespace std;

class Student {
public:
int roll;
string name;

void display() {
cout << "Roll No: " << roll << ", Name: " << name << endl;

}
L

int main() {

Student s1; // object SEfenT

// Class @ members § access A&’

sl.roll = 101;
sl.name = "Rahul";
s1.display(); // function call

return O;

}

Class Members §Access dd& © 3914
1. Dot Operator (.) - AO'JE object It access:

sl.display();
2. Pointer 7T Arrow Operator (->) — AC IHI object T pointer SE7:

Student *ptr = &s1;
ptr->display();

feg 331 C++ 12T Encapsulation ™3 Abstraction I3 OOP concepts & follow ST TS, H code &

structure W3 security fide I&|
A IH IT 00P concepts Tt 2 U T fenrfemir grge I 37 SR, 1 acr f3wrg 93 fonrf|

Q. Write a program to overload ++ and-- operator to increase and decrease the value of class data
members. (Nov 24)
Ans. Operator overloading in C++ allows you to redefine the meaning of operators for user-defined types
(like classes). Below is an example that demonstrates overloading of the ++ and-- operators to modify a
class data member.

Code:
ttinclude <iostream>

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

using namespace std;

class Counter {
private:
int value;

public:
Counter() { value =0; }

// Overloading ++ (prefix)
void operator++() {
++value;

}

// Overloading-- (prefix)
void operator--() {
--value;

}

void display() {
cout << "Value: " << value << endl;
1
Iy

int main() {
Counter c;

cout << "Initial ";
c.display();

++c; // calls operator++
cout << "After ++";
c.display();

--c; // calls operator--
cout << "After--";
c.display();

return O;

}

Explanation:
e operator++() is used to increment the value.
e operator--() is used to decrement the value.
e These are prefix forms; you can also define postfix versions by using a dummy int parameter.
e This demonstrates encapsulation and operator overloading concepts in C++.

C++ f&9 Operator Overloading (Eud<ea G=aafsan
C++ <9 operator overloading T H33H Ifx Eﬁﬁ IR user-defined type (fA= fd class) &t operators

<t feegras & T IIsT Hale J
I i3 GTIIS ++ W3-- GUITT & overload ST class T member variable & TOEE A We@e &
3Jter feuGer J|

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

4 3s:

ttinclude <iostream>
using namespace std;

class Counter {
private:
int value;

public:
Counter() { value =0; }

// ++ GUIEI Tt overloading (prefix)

void operator++() {
++value;

}
//-- BUIET ©F overloading (prefix)

void operator--() {
--value;

}

void display() {
cout << "Value: " << value << endl;

}
L

int main() {
Counter c;

cout << "Initial ";
c.display();

++c; // operator++() call ge“r?r

cout << "After ++ ";
c.display();

--¢c; // operator--() call Ej‘c&é

cout << "After--";
c.display();

return O;

}

fenwrfamir (Explanation in Punjabi):
e operator++() function vaIue?;Sletng?al
e operator--() function vaIueélW@E’ral
o oI prefix form IS (fAR ++x,-x) |

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

o T 3 postfix form (x++, x--) SE@ET Trde I 37 IAT function T dummy int parameter I3
Aae JI

(® feg A3 C++ Encapsulation W3 Operator Overloading @ concepts §EE'FI"'QE" 3

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Unit 4: Inheritance and Polymorphism
Short Answer Questions:

Q. What are public and private keywords? (Nov 20)
Ans. public members are accessible from anywhere in the program, while private members can only be
accessed within the class itself.

public ¥S9 fa3 @ program &9 WA A &3 A Ao I&, ASfd private Hed fige €7t g&w &9 ot
WA A SIS 7 AdS I6 |

Q. Differentiate between private and protected class members. (Nov 20)
Ans. private members are accessible only within the class, while protected members are accessible
within the class and its derived classes.

private Hag fAige a®wA © weg F* wWeAR &3 7 AdR IS,
Al protected HEI ISH W3 €F ©Mif derived classes &G WA A a3 A Ao I& |

Q. Discuss any two disadvantages of Multiple inheritance. (Nov 20)
Ans. Multiple inheritance can cause ambiguity (e.g., diamond problem) and increases code complexity,
making maintenance harder.

Ambiguity (WAYHEE3") JT' J Aot I, A= f diamond problem | 33 fe=T complex I Aer I, fAA
&% maintenance HAIS J Arel J1

Q. Virtual base class (Nov 24)
Ans. A virtual base class prevents multiple copies of a base class in a multiple inheritance hierarchy,
resolving ambiguity.

Virtual base class HBSUS fTaISEH &9 base class ©F duplicate copies €& 3 It I, A &5
ambiguity § ©I 3" AeT I

Q. What is an exception in C++? (Nov 22)
Ans. An exception is a runtime error-handling mechanism that allows the program to catch and manage
unexpected errors using try, catch, and throw.

Exception 8 runtime error-handling mechanism IA try, catch W3 throw keywords ©F ECEACGL
wWefligd errors § handle I I

Q. How do you allocate and deallocate memory in C++? (Nov 22)
Ans. Use new to dynamically allocate memory and delete to free it when no longer needed.

new keyword &' dynamically memory allocate A3t AL I WS delete 35 @EI memory CRICIEl
A<t I A< 89 3T & I

Q. New (Nov 24)
ans. new is a dynamic memory operator in C++ used to allocate memory for variables or objects at
runtime.

new & dynamic memory operator I A runtime 3 variables A objects Zgr memory allocate IS B
TIfamr Arer J|

Long Answer Questions:
Q. What is runtime polymorphism in C++? Write a program to illustrate it. (Nov 22)
Ans. Runtime Polymorphism in C++ (in 200 Words):

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

Runtime polymorphism in C++ is a form of polymorphism that occurs during program execution. It is
achieved using inheritance and virtual functions. This allows a base class pointer to call functions from
derived class objects at runtime, enabling dynamic method dispatch.

The primary requirement is to declare a function as virtual in the base class and override it in the derived
class. This allows C++ to decide at runtime which function to invoke, based on the actual object type.

Program to lllustrate Runtime Polymorphism:
#include <iostream>
using namespace std;

class Animal {
public:
virtual void sound() {
cout << "Animal makes a sound" << endl;
1
Iy

class Dog : public Animal {
public:
void sound() override {
cout << "Dog barks" << endl;
}
Iy

class Cat : public Animal {
public:
void sound() override {
cout << "Cat meows" << end|;
}
Iy

int main() {
Animal* a; //base class pointer
Dog d;
Catg;

a=8&d;
a->sound(); // Calls Dog's sound()

a=&c
a->sound(); // Calls Cat's sound()

return O;

}

Output:

Dog barks

Cat meows

Conclusion:

Runtime polymorphism enhances flexibility and reusability by allowing objects to behave differently
depending on their actual class at runtime.

C++ fS9 Runtime Polymorphism (200 HEef feg)

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

C++ f&T Runtime Polymorphism 83 feeara 3 7 durfes J= 3 gmie, 88T @ A (runtime) 3 3
Jer 3| T fesdfISH (Inheritance) W3 TIGWB SIHST (Virtual Functions) It ITHS 13T AT J|
fore T, f8d base class @ pointer A reference, derived class F object § point E‘HFIB{ETETWB@H
object € function definition & runtime '3 &g J|
vy At IS

o Base class f€9 function & virtual AfF3 3 Her J|

o Derived class f&8 8 function & override Sft3™ A= J|

 f&J mechanism dynamic dispatch S 7St J|

©TI95 — Runtime Polymorphism T a3

#include <iostream>
using namespace std;

class Animal {
public:
virtual void sound() {
cout << "Animal makes a sound" << endl;
1
2

class Dog : public Animal {
public:
void sound() override {
cout << "Dog barks" << endl;
}
Iy

class Cat : public Animal {
public:
void sound() override {
cout << "Cat meows" << endl;

1
2
int main() {
Animal* a; // base class pointer
Dog d;
Catc;

a=&d;
a->sound(); // Dog Tt sound() call g"e“r?r

a=&c

a->sound(); // Cat =t sound() call QE"TET

return O;

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

wr@eye (Output):

Dog barks
Cat meows

&3 (Conclusion): Runtime polymorphism C++ R9 g matadl fenm3 I & code &
SBTHIES, reuseable 3 T HT3QBT F=ET I e allow ITTF I T objects WUE WHS type
WSHT runtime '3 W&JT feedd a9 AdE |

Q. What are the various types of access specifiers used in C++? (Nov 24)

Ans. Access specifiers in C++ are keywords used to set the accessibility or visibility of class members
(variables and functions). They help implement encapsulation by controlling how class members are
accessed from outside the class. There are three main access specifiers in C++:

1. Public:

e Members declared as public are accessible from anywhere in the program using the object of

the class.

e Used when functions or variables need to be accessed freely.
Example:
class Demo {
public:

int x; // accessible from outside

L

2. Private:
e Members declared as private can only be accessed within the class itself.
e They are not accessible directly from outside the class.
e Used to protect sensitive data.
Example:
class Demo {
private:
int x; // not accessible directly outside the class

L

3. Protected:
e Members are accessible within the class and in derived (child) classes.
e Not accessible directly from outside the class or from unrelated classes.
Example:
class Base {
protected:
int x; // accessible in derived class

Iy

Access specifiers are crucial for building secure and modular object-oriented applications in C++.

C++ f&T Access Specifiers ot g I&?

Access specifiers C++ feg EJT-'[T—HSE (keywords) Qé IS 7 class © I (variables W3 functions) ©F
UJY (accessibility) 7 fEH (visibility) f6aTra3 g€ I& | fed encapsulation B 496 €0 HEE 9T
%ﬁﬂwmﬁéﬁé“@ﬁﬁclass éﬂwjauzjaﬁ{& @Hé?@'&'ﬁ?él

C++ ﬁ%’@ﬁl{gﬂ access specifiers EJ%EI?S:

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

1. Public:
o Public HE3" 39 class Tt faR &t object It {3 & udo I et I

. Hé‘g’?l’?;?functions H variables 53333”‘8?1“3‘3"%& access IITQET IR, 3T frg eIf3mrAer
J1
gTads:

-

class Demo {
public:
int x; //S"Elﬁﬁtl'r access 3T AT AT I

L

2. Private:

e Private ﬂEl_d’ﬁ:IGE@F'fT class @ Wed Tt access I AR I |

o TI98 A 3 fog O access &t A3 77 A |

o oI HRITSHS (sensitive) 3T T Ifepir Bt @ g3 Aer I
gTrgas:

-

class Demo {
private:

int x; //S"Elﬁﬁtl'r access &It 3T AT ASET
L

3. Protected:
o Protected NS class © WEd W3 derived (59) classes @9 access I AIR I&|

o TIIS AT H unrelated aEs’ﬁ'FTB’EJTEFT access &I g AITT|
gvagds:

-

Cpp
CopyEdit
class Base {
protected:

intx; // derived class fed access ATA AT I
L

&3
Access specifiers C++ ﬁ%’ﬂﬁﬁﬂ?“@ﬂ@'&?object-oriented applications HE’@EB'QSEB’H@_J’T
I&| f&T encapsulation W3 data hiding § HAS3 S9€ Ia|

Q. Explain various types of inheritance that we can perform in C++. Give examples. (Nov 24)
Ans. Inheritance allows a new class (derived class) to acquire properties and behaviors of an existing
class (base class), promoting code reuse. C++ supports several types of inheritance:

1. Single Inheritance: One derived class inherits from one base class.
Example:
class Animal {
public:
void eat() { cout << "Eating\n"; }

L

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

class Dog : public Animal {

public:

void bark() { cout << "Barking\n"; }
2

2. Multiple Inheritance: A derived class inherits from more than one base class.
Example:

class Printer {
public:

void print() { cout << "Printing\n"; }
2
class Scanner {
public:

void scan() { cout << "Scanning\n"; }
Iy

class Copier : public Printer, public Scanner { };

3. Multilevel Inheritance: A derived class inherits from another derived class, forming a chain.
Example:
class Animal {
public:
void eat() { cout << "Eating\n"; }

L

class Dog : public Animal {
public:

void bark() { cout << "Barking\n"; }
Iy

class Puppy : public Dog {
public:
void weep() { cout << "Weeping\n"; }

L

4. Hierarchical Inheritance: Multiple derived classes inherit from a single base class.
Example:
class Animal { };
class Dog : public Animal { };
class Cat : public Animal { };

5. Hybrid Inheritance: Combination of two or more types of inheritance.
Inheritance supports better code organization and reusability in C++.

fea™3 (Inheritance) st 37
Inheritance & &< class (derived class) ?;S)-TT-JET class (base class) WWWW?;SW

9% & AgS3 e J, fiA &% 33 Tagmi weTr I w3 293 et J| C++ ST u-2 famd &
inheritance ?jﬂEl"El"’ﬁ-l’&ETE}

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

1. Single Inheritance (fHI® fea™3): & derived class 8 base class 3 fegm3 I I
gTads:

-

class Animal {
public:
void eat() { cout << "Eating\n"; }

L

class Dog : public Animal {
public:

void bark() { cout << "Barking\n"; }
Iy

2. Multiple Inheritance (SJ-fea™A3): & derived class 8 3 2T base classes 3 feamz 3t J|
gTrgas:

-

class Printer {
public:
void print() { cout << "Printing\n"; }
Iy
class Scanner {
public:

void scan() { cout << "Scanning\n"; }

Iy
class Copier : public Printer, public Scanner { };

3. Multilevel Inheritance (SJ-A33 fea™A3): f€d derived class, 3T derived class 3 fedAz 31 3, fam

&5 JF "gEat J1
gTads:
class Animal {
public:
void eat() { cout << "Eating\n"; }
2
class Dog : public Animal {
public:
void bark() { cout << "Barking\n"; }
Iy
class Puppy : public Dog {
public:
void weep() { cout << "Weeping\n"; }
Iy
4. Hierarchical Inheritance (IrfEIgaa® fea™H3): FeT derived classes f8 T base class 3 feamH3
ZEMi Is|
gTrgas:

-

class Animal { };
class Dog : public Animal { };

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

class Cat : public Animal { };

5. Hybrid Inheritance (fH& g8t feam3):
T A O inheritance T 39T T fHSU|

&3
Inheritance C++ 1S9 A3 & =0T B41 578 W3 w3 TII™ W4T =T8T {9 Hee J3e J|

Q. How can you convert an integer to string in C++? Write a program. (Nov 22)
Ans. In C++, an integer can be converted to a string in multiple ways. The most common and simplest
method is to use the to_string() function provided by the C++ Standard Library (<string> header). This
function takes an integer (or other numeric types) and returns its string representation.

Example Program:
#include <iostream>
#include <string> // Required for std::to_string

using namespace std;

int main() {
int num = 12345;

// Convert integer to string using to_string()
string str = to_string(num);

cout << "Integer: " << num << endl;
cout << "String: " << str << endl;

return O;
}
Explanation:
e Theto_string() function converts the integer num into a string str.
e This string can then be used like any other string object for operations such as concatenation,
output, or manipulation.
e Before C++11, programmers often used stringstream from <sstream> for conversion, but
to_string() is simpler and more efficient.
Output:

Integer: 12345
String: 12345
This method ensures clean and efficient conversion of integers to strings in modern C++.

c++ g 6T § Aefdar fe fa? sefenwr A Aaer J?

c++ g i fEtma & mefdar fio adt 3difomit a7 srefon 7 Heler 31 A3 3 W w3 WS 3t
J to_string() SFHS ©F @I AIAT, 7 C++ Standard Library (<string> 939) &9 fiwer J| fog a0
foam fEStma 7 I3 afad fam § 8T I w3 EHe! Aefdar gy Re sur daer J|

gTggs T ds:

#include <iostream>

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

#include <string> // std::to_string Th BT

using namespace std;

int main() {
int num = 12345;

// to_string() ﬁﬁ?&?ﬁ@éﬂaéﬂ?ﬁmﬁ?m

string str = to_string(num);

cout << "Integer: " << num << endl;
cout << "String: " << str << endl;

return O;
}
fenr
o to_string() @dH& BSHI num §F|€'f‘EEIT str feo ges féer J|
. fegrefdarfes fan & roge Aefdareiar =gt 7 Aaet 3, MR fa dadesns, ffféar At da
HeuBHs|
o C++113Ufgst fag i stringstream Tt @3 AT B AT H, UJto_string() I3 RO WA
W3 3T I
wrgauye:

Integer: 12345
String: 12345

fog 3t wofsd c++ R AT 3 Aefdar 3u<19! 58 F339 "3 Y= J|

Q. What is Exception Handling? Does C++ support Exception Handling? Comment on C++ standard
exceptions. (Nov 22)
Ans. Exception handling is a mechanism to handle runtime errors or unusual conditions in a controlled
way, allowing a program to continue or terminate gracefully without crashing. It separates error-
handling code from regular code, improving clarity and robustness.
In C++, exception handling is fully supported using three keywords:

e try — defines a block of code to monitor for exceptions.

e throw — raises an exception.

e catch — handles the exception thrown.

How It Works:
When an exception occurs inside the try block, control is transferred to the matching catch block that
handles the exception. If no matching catch block is found, the program terminates.

C++ Standard Exceptions:
C++ provides a standard exception hierarchy in the <exception> header, with std::exception as the base
class. Common standard exceptions include:

e std::runtime_error — errors detected during runtime.

e std::logic_error — errors in the program logic.

e std::out_of range — accessing invalid array or container indices.

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

e std:invalid_argument — invalid function arguments.

e std::bad_alloc — memory allocation failure.
These standard exceptions help developers catch and handle common error scenarios efficiently,
promoting better error management.

In summary, C++ supports structured exception handling that improves program reliability by managing
errors without abrupt termination.

WTAURS I3fBarat 37

WaAUHS I3 B 3dlar I fin o8 IoeH 6 JE T8 IS 7 wiRtrge AfES §
HCIBS BI &S AT /T Ao J | foH 3318 '8 Jaa™H & &6 I9m I8 Hdl Iue™ A Hon 39t
&8 g JI6" HHIAS Ier J| fod I83T HI8E T a3 & iH J9F 3 2HIT J9d 97 & AURS3 W3
HAgSteoger J|

C++ 9 WaAURS 38

C++ fET waUHs I3fEI1 36 Hy dieds Tt 293 o8 N3t Al O
o try — BT I3 ITF A MEAUHS BE Haled a3 Aer J|
o throw—*ﬁﬁﬂ%é‘@?@?él
o catch — €58 IR FAUHS & IST 3w J|

fadaHagdRt &?
AT try 587 <9 A8 WTAUHS Jet J, 3t HeIB BH catch 8 § figer I 1 @A WaAurs § 338
g J| A A8 THBTT g8 catch IBH & HBT, 3T YAITH WIad He J /e J|

C++ B fHrSt weaums
C++?§<excepﬁon>§3€ﬁHMWéTﬁaéﬂﬁﬁﬁffﬁﬁﬂ?QFWstd::excepﬁon
31 I WH it Werurs Is:

. std::runﬁme_error—m{@?ﬁmmml

. std::logic_error—WE‘TWﬁHWl

e std:out_of range — IBI NI A daad fEIaH 35 UJT|

. std::invalid_argument—HIBB’EEE‘HK“FGHT@?I

o std::bad_alloc—ﬂﬂé’rﬂ@aﬂﬁéﬁl
wgg Heme ger I

&3

C++ HIfE3 Wearaumes I8 § mHgEs fider I, 1 a3 & AIrs & YaiaH & IIAUAST eager
IS wored ge J= 3 SUEe I

Q. What is the difference between an Object and a Class? What are the various access specifiers in C++?

Write a program to demonstrate working of different access specifiers. (Nov 22)
Ans. Difference Between Object and Class:

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

e A Class is a blueprint or template that defines the properties (data members) and behaviors
(member functions) common to all objects of that type.

e An Object is an instance of a class. It represents a specific entity with actual values stored in
memory.

Access Specifiers in C++:
C++ provides three access specifiers to control visibility of class members:
1. Public: Members are accessible from anywhere.
2. Private: Members are accessible only within the class.
3. Protected: Members are accessible within the class and by derived classes.

Program Demonstrating Access Specifiers:
#include <iostream>
using namespace std;

class Demo {
public:
int publicVar = 1;

private:
int privateVar = 2;

protected:
int protectedVar = 3;

public:
void show() {
cout << "Public: " << publicVar << endl;
cout << "Private: " << privateVar << endl;
cout << "Protected: " << protectedVar << endl;
}
2

int main() {
Demo obj;

// Accessing public member directly
cout << "Public: " << obj.publicVar << endl;

// Accessing private or protected members directly causes error
// cout << obj.privateVar; // Error
// cout << obj.protectedVar; // Error

obj.show(); // Access all members inside class method

return O;

}

This program shows that only public members are accessible outside the class, while private and
protected members can only be accessed within class methods or derived classes.

THI (Object) W3 IB™H (Class) fEg wiza:
IBH (Class): I8H 8 a7 A SuBe It I 7 fA formd Shoft Aol AT (objects) BE WH ITE
(Irer Aga) w3 fearg (HE3) $ ufsetn3 a9t I

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

<THZ (Object): TAZ FHHT! f8T YT (instance) JoI 3| fog g fenm eadtel 3 fan &9 wid sea
WS €9 AST I I |

C++ f€9 Access Specifiers (uj%’ fogarga):

C++ ﬁﬁ’-ﬁ”‘d’éaccess specifiers Wéﬁwﬂwémés%mﬁ?aaéaw
o Public: Ag9t § 33 & ude s Hat I
e Private: 59 fAge a&™A © wied It udouar I8 I&|
e Protected: W59 S&™H W3 ©F S derived SIB™AT fRT Ugouar Je I&|

Access Specifiers E"QEHE"’H:

#include <iostream>
using namespace std;

class Demo {
public:
int publicVar = 1;

private:
int privateVar = 2;

protected:
int protectedVar = 3;

public:
void show() {
cout << "Public: " << publicVar << endl;
cout << "Private: " << privateVar << end|;
cout << "Protected: " << protectedVar << endl;
}
Iy

int main() {
Demo obj;

// Public Herg & fHor WA A aga"

cout << "Public: " << obj.publicVar << endl;

// Private A" Protected ﬂwgﬁwﬂaﬂ‘nm ‘3 Error Wred

// cout << obj.privateVar; // Error
// cout << obj.protectedVar; // Error

obj.show(); // FB™H € HE3 &9 A ASar S Wi A 3&
return O;

}

&3t form Yo 1T feurfnr famir 3 1 frge public ASat § a8 3 S/ag g sladA iz 7
A" J, Al private ™3 protected W3" & IS IBH € wied ' derived I8 {9 Ft udw fizet
3

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++

