
GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 1

Unit 1: Fundamentals of C++
Short Answer QuesƟons:

Q. Write the syntax of wriƟng comments in C++. (Nov 20)
Ans. In C++, single-line comments use //, and mulƟ-line comments are wriƩen using /* comment */.
C++ ਿਵੱਚ ਇੱਕ-ਲਾਈਨ ਿਟੱਪਣੀ ਲਈ // ਵਰਤੀ ਜ�ਦੀ ਹ ੈਅਤ ੇਬਹ-ੁਲਾਈਨ ਿਟੱਪਣੀਆ ਂ /* ਿਟੱਪਣੀ */ ਰੂਪ ਿਵੱਚ ਿਲਖੀਆਂ

ਜ�ਦੀਆ ਂਹਨ।

Q. List various types of operators and their usage. (Nov 22)
Ans. C++ includes arithmeƟc, relaƟonal, logical, assignment, increment/decrement, and bitwise
operators used for performing various computaƟons.
C++ ਿਵੱਚ ਗਿਣਤਕ, ਿਰ©ਤਾਕਾਰਕ, ਤਰਕਸੰਗਤ, ਿਨਰਧਾਰਣ, ਵਾਧੂ/ਘਟਾਓ, ਅਤ ੇਿਬੱਟਵਾਈਜ਼ ਓਪਰਟੇਰ ©ਾਮਲ ਹੁੰ ਦ ੇਹਨ, ਜੋ

ਵੱਖ-ਵੱਖ ਗਣਨਾਵ� ਕਰਨ ਲਈ ਵਰਤ ੇਜ�ਦੇ ਹਨ।

Q. Data types (Nov 24)
Ans. Data types in C++ define the type of data a variable can hold, such as int, float, char, double, and
bool.
C++ ਿਵੱਚ ਡਾਟਾ ਟਾਈਪ ਇਹ ਿਨਰਧਾਰਤ ਕਰਦਾ ਹ ੈਿਕ ਕਈੋ ਵੀ ਵੇਰੀਏਬਲ ਿਕਸ ਿਕਸਮ ਦਾ ਡਾਟਾ ਰੱਖ ਸਕਦਾ ਹ,ੈ ਿਜਵ� ਿਕ

int, float, char, double, ਅਤ ੇbool।

Q. ConƟnue (Nov 24)
Ans. The conƟnue statement is commonly used in for, while, or do-while loops to bypass
remaining code and re-evaluate the loop condiƟon.
conƟnue ਸਟਟੇਮ�ਟ ਆਮ ਤੌਰ 'ਤੇ for, while, ਜ� do-while ਲਪੂ ਿਵੱਚ ਵਰਤੀ ਜ�ਦੀ ਹ,ੈ ਤਾਿਕ ਬਾਕੀ ਕਡੋ ਨੰੂ ਛੱਡ ਕ ੇਲੂਪ ਦੀ

©ਰਤ ਨੰੂ ਮੜੁ ਜ�ਿਚਆ ਜਾ ਸਕ।ੇ

Q. When do you need to use conƟnue statement? (Nov 22)
Ans. The conƟnue statement is used inside loops to skip the current iteraƟon and jump to the next cycle.
conƟnue ਸਟੇਟਮ�ਟ ਲੂਪ ਦੇ ਅੰਦਰ ਵਰਤੀ ਜ�ਦੀ ਹ ੈਤ� ਜੋ ਮੌਜੂਦਾ ਇਟਰ©ੇਨ ਨੰੂ ਛੱਡ ਕ ੇਲੂਪ ਦੀ ਅਗਲੀ ਚੱਕਰ ਤੇ ਜਾਅ।

Q. What is need of type casƟng in C++? (Nov 22)
Ans. Type casƟng is used to convert one data type into another to ensure correct computaƟons and
avoid data loss or mismatch.
Type casƟng ਦੀ ਵਰਤ� ਇੱਕ ਡਾਟਾ ਟਾਈਪ ਨੰੂ ਦੂਜ ੇਿਵੱਚ ਬਦਲਣ ਲਈ ਕੀਤੀ ਜ�ਦੀ ਹ ੈਤ� ਜੋ ਸਹੀ ਗਣਨਾ ਹ ੋਸਕ ੇਅਤ ੇਡਾਟਾ

ਦੀ ਗੁੰ ਮ©ੁਦਾ ਜ� ਗਲਤ ਮੈਿਚੰਗ ਤ� ਬਿਚਆ ਜਾ ਸਕ।ੇ

Long Answer QuesƟons:
Q. What are operators in C++? Explain the types of operators. How is the precedence and associaƟvity
of operators determined? (Nov 20)
Ans. Operators in C++ are special symbols or keywords used to perform operaƟons on variables and
values. They are essenƟal for performing computaƟons, making decisions, and manipulaƟng data.

Types of Operators:

1. ArithmeƟc Operators: Used for basic mathemaƟcal operaƟons: +, -, *, /, %
Example: a + b, x % y

2. RelaƟonal Operators: Compare values and return true/false: ==, !=, >, <, >=, <=
Example: a > b

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 2

3. Logical Operators: Used in decision-making: && (AND), || (OR), ! (NOT)
Example: (a > b && b < c)

4. Assignment Operators: Assign values: =, +=, -=, *=, /=, %=
Example: x += 5 (same as x = x + 5)

5. Increment/Decrement Operators: Increase or decrease value: ++, --
Example: i++, --j

6. Bitwise Operators: Operate on binary representaƟons: &, |, ^, ~, <<, >>
7. Ternary Operator: A shorthand for if-else: condiƟon ? expr1 : expr2

Precedence and AssociaƟvity: Operator precedence determines which operator is evaluated first in an
expression. AssociaƟvity defines the direcƟon (leŌ-to-right or right-to-leŌ) in which operators with the
same precedence are evaluated. For example, * and / have higher precedence than + and -, and most
operators are leŌ-associaƟve.
C++ ਿਵੱਚ Operators ਖਾਸ symbols ਜ� keywords ਹੁੰ ਦੇ ਹਨ ਜੋ variables ਅਤ ੇvalues 'ਤ ੇoperaƟons ਕਰਨ ਲਈ

ਵਰਤ ੇਜ�ਦੇ ਹਨ। ਇਹ operaƟons ਕਰਨ, ਫੈਸਲੇ ਲੈਣ ਅਤ ੇਡਾਟਾ ਨੰੂ ਮੋਡੀਫਾਈ ਕਰਨ ਿਵੱਚ ਜ਼ਰੂਰੀ ਹੁੰ ਦ ੇਹਨ।

Operators ਦ ੇਿਕਸਮ�:

1. ArithmeƟc Operators (ਗਿਣਤੀ ਓਪਰੇਟਰ): ਬੁਿਨਆਦੀ ਗਿਣਤੀ ਕਰਵਾਈਆ ਂਲਈ ਵਰਤ ੇਜ�ਦੇ ਹਨ: +, -, *, /, %

ਉਦਾਹਰਨ: a + b, x % y

2. RelaƟonal Operators (ਤੁਲਨਾਤਮਕ ਓਪਰੇਟਰ): ਮੁੱ ਲ� ਦੀ ਤਲੁਨਾ ਕਰਦ ੇਹਨ ਅਤ ੇtrue ਜ� false ਿਰਟਰਨ ਕਰਦੇ ਹਨ:

==, !=, >, <, >=, <=
ਉਦਾਹਰਨ: a > b

3. Logical Operators (ਤਾਰਿਕਕ ਓਪਰੇਟਰ): ਫੈਸਲੇ ਲੈਣ ਵਾਲੇ expressions ਿਵੱਚ ਵਰਤ ੇਜ�ਦੇ ਹਨ: && (AND), ||

(OR), ! (NOT)
ਉਦਾਹਰਨ: (a > b && b < c)

4. Assignment Operators (ਮੂਲ ਿਨਰਧਾਰਕ ਓਪਰਟੇਰ): ਮੁੱ ਲ ਿਦੱਤਾ ਜ� ਅੱਪਡਟੇ ਕੀਤਾ ਜ�ਦਾ ਹ:ੈ =, +=, -=, *=, /=, %=

ਉਦਾਹਰਨ: x += 5 (ਇਹ x = x + 5 ਦੇ ਬਰਾਬਰ ਹ)ੈ

5. Increment/Decrement Operators (ਵਾਧ/ੂਘਟਾਊ ਓਪਰਟੇਰ): ਮੁੱ ਲ ਨੰੂ 1 ਨਾਲ ਵਧਾ�ਦ ੇਜ� ਘਟਾ�ਦੇ ਹਨ: ++, --

ਉਦਾਹਰਨ: i++, --j

6. Bitwise Operators (ਿਬਨਾਰੀ ਓਪਰੇਟਰ): ਿਬਨਾਰੀ ਰੂਪ ਿਵੱਚ operaƟons ਕਰਦ ੇਹਨ: &, |, ^, ~, <<, >>

7. Ternary Operator (ਿਤ�ਕੜੀ ਓਪਰਟੇਰ): if-else ਦਾ ਛਟੋਾ ਰੂਪ: condiƟon ? expr1 : expr2

Precedence ਅਤ ੇAssociaƟvity:

 Precedence (ਤਰਜੀਹ) ਦੱਸਦੀ ਹ ੈਿਕ ਿਕਹੜਾ operator ਪਿਹਲ� ਚੱਲੇਗਾ।
 AssociaƟvity (ਸੰਯੋਗਤਾ) ਦੱਸਦੀ ਹ ੈਿਕ ਇੱਕ ੋਪ�ਧਾਨਤਾ ਵਾਲੇ operators ਿਕਸ ਿਦ©ਾ ਿਵੱਚ evaluate ਹੋਣਗ ੇ—

leŌ-to-right ਜ� right-to-leŌ।

ਉਦਾਹਰਨ: * ਅਤ ੇ/ ਦੀ precedence + ਅਤ ੇ- ਨਾਲ� ਵੱਧ ਹੁੰ ਦੀ ਹ।ੈ ਿਜ਼ਆਤਰ operators leŌ-associaƟve ਹੁੰ ਦ ੇਹਨ।

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 3

Q. Explain the stages of program execuƟon in C/C++. (Nov 20)
Ans. Program execuƟon in C/C++ involves several stages, from wriƟng code to running the final
executable. These stages ensure that source code is translated into machine-understandable form and
executed correctly.

1. EdiƟng (WriƟng the Program): The first stage is wriƟng the source code in a text editor or IDE

(like Code::Blocks, Turbo C++, or Visual Studio). The code is saved with extensions .c or .cpp.
2. Preprocessing: The preprocessor processes all preprocessor direcƟves like #include, #define,

etc., before actual compilaƟon. It includes header files and expands macros.
3. CompilaƟon: The compiler translates the preprocessed code into assembly code or object code

(.obj or .o files). It checks for syntax errors during this stage.
4. Assembly: The assembler converts the assembly code into machine code, generaƟng object

files that contain low-level binary instrucƟons.
5. Linking: The linker combines one or more object files with required libraries (like stdio.h,

iostream) to produce a single executable file (.exe). It resolves external references like funcƟons
or variables declared in other files.

6. Loading and ExecuƟon: The operaƟng system loads the executable file into memory and starts
execuƟon. The program runs and interacts with system resources as needed.

These stages ensure the transformaƟon of human-readable code into executable programs efficiently
and systemaƟcally.
C/C++ ਿਵੱਚ Program ExecuƟon ਦੀ ਪ�ਿਕਿਰਆ ਕਈ ਪੜਾਅ◌ਾ◌ ਂ ਿਵੱਚ ਹੁੰ ਦੀ ਹ,ੈ ਿਜਸਦਾ ਉਦ©ੇ ਸੋਰਸ ਕੋਡ ਨੰੂ ਮ©ੀਨ

ਦੁਆਰਾ ਸਮਝਣਯੋਗ ਰੂਪ ਿਵੱਚ ਤਬਦੀਲ ਕਰਨਾ ਅਤ ੇਉਸਨੰੂ ਸਹੀ ਢੰਗ ਨਾਲ ਚਲਾਉਣਾ ਹੁੰ ਦਾ ਹ।ੈ

1. EdiƟng (ਪ�ਗੋ�ਾਮ ਿਲਖਣਾ): ਸਭ ਤ� ਪਿਹਲ�, ਕੋਡ ਨੰੂ ਿਕਸ ੇtext editor ਜ� IDE (ਿਜਵ� Code::Blocks, Turbo C++, ਜ�

Visual Studio) ਿਵੱਚ ਿਲਿਖਆ ਜ�ਦਾ ਹ।ੈ ਇਹ ਸੋਰਸ ਕੋਡ .c ਜ� .cpp extension ਨਾਲ ਸੰਭਾਿਲਆ ਜ�ਦਾ ਹ।ੈ

2. Preprocessing (ਪ�ੀ-ਪ�ੋਸੈਿਸੰਗ): Preprocessor ਸਾਰ ੇ preprocessor ਡਾਇਰਕੈਿਟਵਸ ਨੰੂ ਪ�ੋਸੈਸ ਕਰਦਾ ਹ,ੈ ਿਜਵ�

#include, #define, ਆਿਦ। ਇਹ header files ਨੰੂ ©ਾਮਲ ਕਰਦਾ ਹ ੈਅਤ ੇmacros ਨੰੂ ਿਵਸਥਾਿਰਤ ਕਰਦਾ ਹ।ੈ

3. CompilaƟon (ਕੰਪਾਈਲੇ©ਨ): Compiler preprocessed ਕਡੋ ਨੰੂ assembly code ਜ� object code ਿਵੱਚ ਤਬਦੀਲ

ਕਰਦਾ ਹ ੈ(.obj ਜ� .o ਫਾਈਲ�)। ਇਹ ਪੜਾਅ syntax errors ਨੰੂ ਵੀ ਜ�ਚਦਾ ਹ।ੈ

4. Assembly (ਅਸੈਮਬਲੀ): Assembler assembly code ਨੰੂ machine code ਿਵੱਚ ਤਬਦੀਲ ਕਰਦਾ ਹ,ੈ ਿਜਸ ਨਾਲ

object files ਬਣਦੀਆਂ ਹਨ ਜੋ ਿਕ low-level binary instrucƟons ਰੱਖਦੀਆ ਂਹਨ।

5. Linking (ਿਲੰਿਕੰਗ): Linker ਇੱਕ ਜ� ਵੱਧ object files ਨੰੂ libraries (ਿਜਵ� stdio.h, iostream) ਨਾਲ ਿਮਲਾ ਕ ੇਇੱਕ

executable file ਬਣਾ�ਦਾ ਹ ੈ(.exe)। ਇਹ ਉਹਨ� funcƟons ਜ� variables ਦੀ definiƟon ਲੱਭਦਾ ਹ ੈਜੋ ਿਕਸ ੇਹੋਰ file

ਿਵੱਚ ਹਨ।

6. Loading and ExecuƟon (ਲੋਿਡੰਗ ਅਤ ੇਚਲਾਉਣਾ): OperaƟng System executable file ਨੰੂ memory ਿਵੱਚ ਲੋਡ

ਕਰਦਾ ਹ ੈਅਤ ੇexecuƟon ©ੁਰ ੂਕਰਦਾ ਹ।ੈ ਹੁਣ ਪ�ੋਗ�ਾਮ system resources ਨਾਲ ਸੰਪਰਕ ਕਰਕ ੇਚੱਲਦਾ ਹ।ੈ

ਸੰਖੇਪ ਿਵੱਚ, ਇਹ ਸਾਰ ੇਪੜਾਅ ਇਹ ਯਕੀਨੀ ਬਣਾ�ਦੇ ਹਨ ਿਕ ਮਨੱੁਖੀ ਭਾ©ਾ ਿਵੱਚ ਿਲਿਖਆ ਕਡੋ ਸਹੀ ਤਰੀਕ ੇਨਾਲ ਮ©ੀਨ

ਦੁਆਰਾ ਚਲਾਇਆ ਜਾ ਸਕੇ।

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 4

Q. What are the various Compound Assignment Operators in C++? State the difference between Pre
and Post Increment/Decrement OperaƟons. (Nov 22)
Ans. Compound Assignment Operators in C++ are shorthand notaƟons that combine an arithmeƟc or
bitwise operaƟon with assignment. They simplify code and improve readability. The main compound
assignment operators include:

 += → Adds and assigns: a += 5; is the same as a = a + 5;
 -= → Subtracts and assigns: a -= 3;
 *= → MulƟplies and assigns: a *= 2;
 /= → Divides and assigns: a /= 4;
 %= → Modulus and assigns: a %= 2;
 &=, |=, ^=, <<=, >>= → Bitwise assignment operators

These operators help reduce redundancy in code.

Difference Between Pre and Post Increment/Decrement:
 Pre-Increment/Decrement (++i, --i): The variable is incremented or decremented before its

value is used in an expression.
Example:

int a = 5, b;
b = ++a; // a becomes 6, then b = 6

 Post-Increment/Decrement (i++, i--): The original value of the variable is used in the expression
before it is changed.
Example:

int a = 5, b;
b = a++; // b = 5, then a becomes 6
Pre and post operaƟons are oŌen used in loops and expressions requiring controlled value updates.
C++ ਿਵੱਚ Compound Assignment Operators:

Compound Assignment Operators ਛਟੋਾ ਿਲਖਣ ਵਾਲਾ ਤਰੀਕਾ ਹੁੰ ਦ ੇਹਨ ਜੋ ਿਕ arithmeƟc ਜ� bitwise operaƟon

ਨੰੂ assignment ਦੇ ਨਾਲ ਜੋੜਦ ੇਹਨ। ਇਹ ਕਡੋ ਨੰੂ ਸਰਲ ਅਤ ੇਪੜ�ਨ ਯੋਗ ਬਣਾ�ਦੇ ਹਨ।
ਮੁੱ ਖ compound assignment operators ਿਵੱਚ ©ਾਮਲ ਹਨ:

 += → ਜੋੜ ਕ ੇਅਸਾਈਨ ਕਰਨਾ: a += 5; ਇਹ a = a + 5; ਦੇ ਬਰਾਬਰ ਹ ੈ

 -= → ਘਟਾ ਕ ੇਅਸਾਈਨ ਕਰਨਾ: a -= 3;

 *= → ਗਣੁਾ ਕਰਕ ੇਅਸਾਈਨ ਕਰਨਾ: a *= 2;

 /= → ਭਾਗ ਦੇ ਕ ੇਅਸਾਈਨ ਕਰਨਾ: a /= 4;

 %= → Modulus ਕਰਕ ੇਅਸਾਈਨ ਕਰਨਾ: a %= 2;

 &=, |=, ^=, <<=, >>= → ਇਹ Bitwise assignment operators ਹਨ

ਇਹ operators ਕੋਡ ਿਵਚ ਦੁਹਰਾਅ ਨੰੂ ਘਟਾ�ਦੇ ਹਨ ਅਤ ੇਸਮਝਣ ਿਵੱਚ ਆਸਾਨ ਹੁੰ ਦੇ ਹਨ।

Pre ਅਤ ੇPost Increment/Decrement ਿਵਚ ਅੰਤਰ:

Pre-Increment/Decrement (++i, --i): ਵਰੈੀਏਬਲ ਦੀ value ਨੰੂ ਪਿਹਲ� ਵਧਾਇਆ ਜ� ਘਟਾਇਆ ਜ�ਦਾ ਹ,ੈ ਿਫਰ ਉਹ

value expression ਿਵੱਚ ਵਰਤੀ ਜ�ਦੀ ਹ।ੈ
ਉਦਾਹਰਨ:

int a = 5, b;
b = ++a; // ਪਿਹਲ� a = 6, ਿਫਰ b = 6

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 5

Post-Increment/Decrement (i++, i--): ਵੈਰੀਏਬਲ ਦੀ ਮੂਲ value ਨੰੂ ਪਿਹਲ� expression ਿਵੱਚ ਵਰਿਤਆ ਜ�ਦਾ ਹ,ੈ ਿਫਰ

value ਿਵੱਚ ਤਬਦੀਲੀ ਕੀਤੀ ਜ�ਦੀ ਹ।ੈ

ਉਦਾਹਰਨ:

int a = 5, b;
b = a++; // ਪਿਹਲ� b = 5, ਿਫਰ a = 6

Pre ਅਤ ੇPost operaƟons ਆਮ ਤੌਰ 'ਤ ੇloops ਅਤ ੇexpressions ਿਵੱਚ ਵਰਤ ੇਜ�ਦੇ ਹਨ ਿਜੱਥ ੇvalue ਨੰੂ ਿਨਯੰਿਤ�ਤ ਢੰਗ

ਨਾਲ ਅੱਪਡਟੇ ਕਰਨਾ ਲੋੜ�ਦਾ ਹ।ੈ

Q. Write a C++ program to swap two numbers with and without the use of third variable. (Nov 20)
Ans.
#include <iostream>
using namespace std;

int main() {
 int a, b, temp;

 // Input two numbers
 cout << "Enter two numbers: ";
 cin >> a >> b;

 // Swap using third variable
 cout << "\nSwapping with third variable..." << endl;
 temp = a;
 a = b;
 b = temp;
 cout << "AŌer swap: a = " << a << ", b = " << b << endl;

 // Reset values
 cout << "\nEnter two new numbers: ";
 cin >> a >> b;

 // Swap without using third variable
 cout << "\nSwapping without third variable..." << endl;
 a = a + b;
 b = a - b;
 a = a - b;
 cout << "AŌer swap: a = " << a << ", b = " << b << endl;

 return 0;
}
This program demonstrates two methods of swapping variables:

1. With a third variable: Uses a temporary variable temp to hold the value of one variable during
swapping.

2. Without a third variable: Uses arithmeƟc operaƟons (addiƟon and subtracƟon) to swap the
values.

Both methods achieve the same result but are useful in different situaƟons. The second method is
memory efficient but must be used carefully to avoid overflow.
1. ਤੀਜ ੇਵੈਰੀਏਬਲ ਨਾਲ:

ਇਸ ਤਰੀਕ ੇਿਵੱਚ ਇੱਕ ਅਸਥਾਈ ਵੈਰੀਏਬਲ temp ਵਰਿਤਆ ਜ�ਦਾ ਹ ੈਜੋ ਇੱਕ ਵੈਰੀਏਬਲ ਦੀ value ਨੰੂ temporarily ਸ�ਭ

ਕ ੇਰੱਖਦਾ ਹ ੈਜਦ ਤੱਕ ਦੂਜ ੇਦੀ value ਅਸਾਈਨ ਕੀਤੀ ਜ�ਦੀ ਹ।ੈ

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 6

2. ਤੀਜ ੇਵੈਰੀਏਬਲ ਤ� ਿਬਨ�:

ਇਸ ਤਰੀਕ ੇਿਵੱਚ ਗਿਣਿਤਕ ਿਕ�ਯਾਵ� (ਜੋੜ ਅਤ ੇਘਟਾਓ) ਦੀ ਵਰਤ� ਕਰਕ ੇvalues ਦੀ ਅਦਲਾ-ਬਦਲੀ ਕੀਤੀ ਜ�ਦੀ ਹ।ੈ

ਦੋਵ� ਤਰੀਕ ੇਇੱਕ ੋਹੀ ਨਤੀਜਾ ਿਦੰਦ ੇਹਨ ਪਰ ਵੱਖ-ਵੱਖ ਹਾਲਤ� ਿਵੱਚ ਲਾਭਕਾਰੀ ਹੁੰ ਦ ੇਹਨ। ਦੂਜਾ ਤਰੀਕਾ memory efficient

ਹੁੰ ਦਾ ਹ ੈਪਰ ਇਸ ਦੀ ਵਰਤ� ਸਮ� overflow ਤ� ਬਚਣ ਲਈ ਿਧਆਨ ਦੀ ਲੋੜ ਹੁੰ ਦੀ ਹ।ੈ

Q. Write a program to check whether a number is palindrome or not? (Nov 20)
Ans. #include <iostream>
using namespace std;

int main() {
 int num, reversed = 0, remainder, original;

 // Input number from user
 cout << "Enter an integer: ";
 cin >> num;

 original = num; // Store original number for comparison

 // Reverse the number
 while (num != 0) {
 remainder = num % 10; // Get last digit
 reversed = reversed * 10 + remainder; // Build reversed number
 num /= 10; // Remove last digit
 }

 // Check if original and reversed are the same
 if (original == reversed)
 cout << original << " is a palindrome." << endl;
 else
 cout << original << " is not a palindrome." << endl;

 return 0;
}
A palindrome number is one that remains the same when its digits are reversed (e.g., 121, 1331).
This program:

 Takes an integer input from the user.
 Stores the original number.
 Reverses the number using a while loop.
 Compares the reversed number with the original.
 If both are the same, it prints that the number is a palindrome; otherwise, it is not.

This program demonstrates use of loops, condiƟonals, and arithmeƟc operaƟons in C++.
Palindrome ਨੰਬਰ ਉਹ ਨੰਬਰ ਹੁੰ ਦ ੇਹਨ ਜੋ ਉਲਟ ੇਕਰਨ 'ਤੇ ਵੀ ਓਹੀ ਰਿਹੰਦੇ ਹਨ (ਿਜਵ� 121, 1331)।

ਇਹ ਕਾਰਜ (program) ਇਹ ਦਰਸਾ�ਦਾ ਹ:ੈ

 ਯੂਜ਼ਰ ਤ� ਇੱਕ integer ਇਨਪੁੱ ਟ ਲ�ਦਾ ਹ।ੈ

 Original ਨੰਬਰ ਨੰੂ ਸੰਭਾਲ ਕ ੇਰੱਖਦਾ ਹ।ੈ

 while ਲੂਪ ਦੀ ਮਦਦ ਨਾਲ ਨੰਬਰ ਨੰੂ ਉਲਟਦਾ ਹ।ੈ

 Reversed ਨੰਬਰ ਨੰੂ Original ਨੰਬਰ ਨਾਲ ਤਲੁਨਾ ਕਰਦਾ ਹ।ੈ

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 7

 ਜੇ ਦੋਵ� ਨੰਬਰ ਇਕੱਥ ੇ ਹਨ ਤ� ਿਪ�ੰ ਟ ਕਰਦਾ ਹ ੈ ਿਕ ਇਹ ਨੰਬਰ palindrome ਹ,ੈ ਨਹ� ਤ� ਦੱਸਦਾ ਹ ੈ ਿਕ ਇਹ

palindrome ਨਹ� ਹ।ੈ

ਇਹ ਕਾਰਜ loops, condiƟonals ਅਤ ੇarithmeƟc operaƟons ਦੀ ਵਰਤ� ਨੰੂ C++ ਿਵੱਚ ਿਵਖਾ�ਦਾ ਹ।ੈ

Q. What is the meaning of scope of a variable in C++? Illustrate with an example. Write in detail about
Pass by Value and Pass by Reference. (Nov 22)
Ans. Scope of a variable refers to the part of a program where the variable is accessible or can be used.
In C++, scopes are categorized as:

1. Local Scope: Variables declared inside a funcƟon or block and accessible only within that block.
2. Global Scope: Variables declared outside all funcƟons and accessible throughout the program.
3. Block Scope: Variables declared within control statements like if, for, or {} blocks.

Example:
#include <iostream>
using namespace std;
int x = 10; // Global scope

void show() {
 int x = 5; // Local scope
 cout << "Local x: " << x << endl;
}

int main() {
 show();
 cout << "Global x: " << x << endl;
 return 0;
}

Pass by Value vs. Pass by Reference:

 Pass by Value: A copy of the variable is passed to the funcƟon. Changes made inside the funcƟon
do not affect the original variable.

void func(int x) { x = x + 5; }
 Pass by Reference: The actual variable is passed using reference (&). Changes inside the funcƟon

affect the original variable.
void func(int &x) { x = x + 5; }
Use pass by reference when you want to modify original values or improve performance by avoiding
copies.

ਵੈਰੀਅਬਲ ਦੀ Scope: ਵਰੈੀਅਬਲ ਦੀ scope ਤ� ਭਾਵ ਹ ੈਿਕ ਿਕਸ ਿਹੱਸ ੇਿਵੱਚ ਉਸ ਵੈਰੀਅਬਲ ਨੰੂ ਐਕਸ{ੈਸ ਕੀਤਾ ਜਾ ਸਕਦਾ

ਹ ੈਜ� ਵਰਿਤਆ ਜਾ ਸਕਦਾ ਹ।ੈ C++ ਿਵੱਚ ਇਹ ਿਤੰਨ ਿਕਸਮ� ਦੀ ਹ ੋਸਕਦੀ ਹ:ੈ

1. Local Scope (ਸਥਾਨਕ ਸੀਮਾ): ਵੈਰੀਅਬਲ ਜੋ ਿਕਸ ੇfuncƟon ਜ� block ਿਵੱਚ ਿਡਕਲੇਅਰ ਕੀਤਾ ਜ�ਦਾ ਹ ੈਅਤ ੇ

ਿਸਰਫ਼ ਉਨ� � ਦੇ ਅੰਦਰ ਹੀ ਵਰਿਤਆ ਜਾ ਸਕਦਾ ਹ।ੈ
2. Global Scope (ਗਲੋਬਲ ਸੀਮਾ): ਵੈਰੀਅਬਲ ਜੋ ਸਾਰ ੇfuncƟons ਤ� ਬਾਹਰ ਿਡਕਲੇਅਰ ਕੀਤਾ ਜ�ਦਾ ਹ ੈਅਤ ੇਪੂਰ ੇ

ਪ�ੋਗਰਾਮ ਿਵੱਚ ਉਪਲਬਧ ਹੁੰ ਦਾ ਹ।ੈ

3. Block Scope (ਬਲਾਕ ਸੀਮਾ): ਵੈਰੀਅਬਲ ਜੋ if, for, ਜ� {} ਵਰਗੇ statements ਿਵੱਚ ਿਡਕਲੇਅਰ ਹੁੰ ਦ ੇਹਨ ਅਤ ੇ

ਉਨ� � blocks ਿਵੱਚ ਹੀ ਵਰਿਤਆ ਜਾ ਸਕਦਾ ਹ।ੈ
ਉਦਾਹਰਨ:

#include <iostream>
using namespace std;

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 8

int x = 10; // Global scope

void show() {
 int x = 5; // Local scope
 cout << "Local x: " << x << endl;
}

int main() {
 show();
 cout << "Global x: " << x << endl;
 return 0;
}

Pass by Value vs Pass by Reference
Pass by Value (ਮੂਲ ਰਾਹ� ਪਾਸ ਕਰਨਾ): ਇਸ ਿਵੱਚ funcƟon ਨੰੂ ਵੈਰੀਅਬਲ ਦੀ copy ਿਦੱਤੀ ਜ�ਦੀ ਹ।ੈ FuncƟon ਿਵੱਚ

ਹੋਈਆ ਂਤਬਦੀਲੀਆ ਂਮਲੂ ਵੈਰੀਅਬਲ ਨੰੂ ਪ�ਭਾਿਵਤ ਨਹ� ਕਰਦੀਆ।ਂ

void func(int x) { x = x + 5; }
Pass by Reference (ਹਵਾਲਾ ਰਾਹ� ਪਾਸ ਕਰਨਾ): ਇਸ ਿਵੱਚ funcƟon ਨੰੂ ਵੈਰੀਅਬਲ ਦਾ ਹਵਾਲਾ (&) ਿਦੱਤਾ ਜ�ਦਾ ਹ।ੈ

FuncƟon ਿਵੱਚ ਕੀਤੀ ਤਬਦੀਲੀ ਮੂਲ ਵੈਰੀਅਬਲ ਿਵੱਚ ਹ ੋਜ�ਦੀ ਹ।ੈ

void func(int &x) { x = x + 5; }
ਿਕ� ਵਰਤਦ ੇਹ� Pass by Reference?

 ਜਦ� ਤੁਸ� ਮਲੂ ਡਟੇਾ ਨੰੂ ਤਬਦੀਲ ਕਰਨਾ ਚਾਹੁੰ ਦ ੇਹ।ੋ

 ਜਦ� ਤੁਸ� copy ਬਣਾਉਣ ਤ� ਬਚਣਾ ਚਾਹੁੰ ਦ ੇਹ ੋ(ਪ�ਦਰ©ਨ ਵਧਾਉਣ ਲਈ)।

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 9

Unit 2: Control Statements and FuncƟons
Short Answer QuesƟons:

Q. What do you mean by if-else ladder? (Nov 22)
Ans. An if-else ladder is used to evaluate mulƟple condiƟons sequenƟally, execuƟng the block of the first
true condiƟon.
if-else ladder ਕਈ ©ਰਤ� ਨੰੂ ਲਗਾਤਾਰ ਜ�ਚਣ ਲਈ ਵਰਤੀ ਜ�ਦੀ ਹ ੈਅਤ ੇਿਜਸ ਵੀ ©ਰਤ ਨੰੂ ਸਭ ਤ� ਪਿਹਲ� ਸੱਚ ਪਾਇਆ

ਜ�ਦਾ ਹ,ੈ ਉਸਦਾ ਕਡੋ ਬਲਾਕ ਚਲਾਇਆ ਜ�ਦਾ ਹ।ੈ

Q. What is the advantage of switch statement over If-Else statement? (Nov 20)
Ans. The switch statement is more readable and efficient when handling mulƟple discrete values of a
single variable.
switch statement ਇੱਕ ਹੀ ਵਰੇੀਏਬਲ ਦੀ ਕਈ ਅਲੱਗ-अਲੱਗ ਮੁੱ ਲ� ਨੰੂ ਸੰਭਾਲਣ ਵੇਲੇ ਿਜ਼ਆਦਾ ਪੜ�ਨਯੋਗ ਅਤ ੇਪ�ਭਾਵ©ਾਲੀ

ਹੁੰ ਦੀ ਹ।ੈ

Q. Global Variable (Nov 24)
Ans. A global variable is declared outside all funcƟons and is accessible throughout the enƟre program.
Global variable ਉਹ ਵੇਰੀਏਬਲ ਹੁੰ ਦੀ ਹ ੈਜੋ ਸਾਰੀਆਂ ਫੰਕ©ਨ� ਤ� ਬਾਹਰ ਘੋਿ©ਤ ਕੀਤੀ ਜ�ਦੀ ਹ ੈਅਤ ੇਪੂਰ ੇਪ�ੋਗ�ਾਮ ਿਵੱਚ

ਉਪਲਬਧ ਰਿਹੰਦੀ ਹ।ੈ

Q. StaƟc variable (Nov 24)
Ans. A staƟc variable retains its value between funcƟon calls and is iniƟalized only once.
StaƟc variable ਇੱਕ ਐਸੀ ਵੇਰੀਏਬਲ ਹੁੰ ਦੀ ਹ ੈਜੋ ਫੰਕ©ਨ ਕਾਲ� ਿਵਚਕਾਰ ਆਪਣੀ ਕੀਮਤ ਸੰਭਾਲ ਕ ੇਰੱਖਦੀ ਹ ੈਅਤ ੇਿਸਰਫ

ਇੱਕ ਵਾਰੀ ਹੀ ਇਿਨ©ੀਅਲਾਈਜ਼ ਹੁੰ ਦੀ ਹ।ੈ

Q. Protected (Nov 24)
Ans. protected is an access specifier that allows a class member to be accessed by the class itself and
its derived classes.
protected ਇੱਕ access specifier ਹੁੰ ਦਾ ਹ ੈਜੋ ਿਕਸ ੇਕਲਾਸ ਮ�ਬਰ ਨੰੂ ਉਸ ਕਲਾਸ ਅਤ ੇਉਸ ਤ� ਿਨਕਲੀ ਹੋਈ ਿਡਰਾਈਵਡ

ਕਲਾਸ� ਵੱਲ� ਐਕਸ{ੈਸ ਕਰਨ ਦੀ ਆਿਗਆ ਿਦੰਦਾ ਹ।ੈ

Q. Write a program to find the mean of 5 numbers. (Nov 20)
Ans. #include <iostream>
using namespace std;
int main() {
 float a, b, c, d, e, mean;
 cin >> a >> b >> c >> d >> e;
 mean = (a + b + c + d + e) / 5;
 cout << "Mean = " << mean;
 return 0;
}

Long Answer QuesƟons:
Q. Explain the use of funcƟons and its types. (Nov 24)
Ans. FuncƟons in C++ are blocks of code designed to perform specific tasks. They help in modularizing
the program, promoƟng code reusability, and making it easier to test, debug, and maintain.

Uses of FuncƟons:

 Code Reusability: A funcƟon can be called mulƟple Ɵmes in a program.

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 10

 Modularity: Breaks down a complex program into manageable secƟons.
 Improved Readability: Each funcƟon performs a specific task, making the program easier to

understand.
 Ease of Maintenance: Modifying one funcƟon doesn't affect others.

Types of FuncƟons:

1. Library FuncƟons: These are built-in funcƟons provided by C++ libraries, such as sqrt(), pow(),
cin, and cout.

2. User-defined FuncƟons: These are funcƟons created by the programmer to perform specific
tasks.

With no return & no parameters:
void display() { cout << "Hello"; }
With return & no parameters:
int getValue() { return 10; }
With return & parameters:
int sum(int a, int b) { return a + b; }
FuncƟons enhance program structure and are essenƟal for large-scale development. Proper use of
funcƟon types ensures efficient and clean coding pracƟces.
C++ ਿਵੱਚ FuncƟons: FuncƟons ਉਹ ਕੋਡ ਦ ੇblock ਹੁੰ ਦ ੇਹਨ ਜੋ ਿਕਸ ੇਿਨਰਧਾਿਰਤ ਕੰਮ ਨੰੂ ਕਰਨ ਲਈ ਬਣਾਏ ਜ�ਦੇ ਹਨ।

ਇਹ ਪ�ੋਗਰਾਮ ਨੰੂ ਮੋਡੀਊਲ ਬਣਾ�ਦ ੇਹਨ, ਕਡੋ ਦੀ ਦੁਬਾਰਾ ਵਰਤ� ਕਰਵਾ�ਦੇ ਹਨ, ਅਤ ੇਟੈਸਟ, ਡੀਬੱਗ ਅਤ ੇਮ�ਟੇਨ ਕਰਨਾ

ਆਸਾਨ ਬਣਾ�ਦੇ ਹਨ।

FuncƟons ਦ ੇਉਪਯਗੋ (Uses of FuncƟons):

 Code Reusability (ਕਡੋ ਦੀ ਦਬੁਾਰਾ ਵਰਤ�): ਇੱਕ FuncƟon ਨੰੂ ਕਈ ਵਾਰੀ ਕਾਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹ।ੈ

 Modularity (ਮੋਡੀਊਲ ਬਣਾਉਣਾ): ਵੱਡੇ ਪ�ੋਗਰਾਮ ਨੰੂ ਛੋਟ-ੇਛਟੋ ੇਿਹੱਿਸਆ ਂਿਵੱਚ ਵੰਡਣਾ।
 Readability ਵਧਾ�ਦੀ ਹੈ: ਹਰ FuncƟon ਇੱਕ ਖਾਸ ਕੰਮ ਕਰਦਾ ਹ ੈਿਜਸ ਨਾਲ ਪ�ੋਗਰਾਮ ਸਮਝਣ ਿਵੱਚ ਆਸਾਨੀ

ਹੁੰ ਦੀ ਹ।ੈ

 Maintenance ਆਸਾਨ ਬਣਦੀ ਹੈ: ਇੱਕ FuncƟon ਿਵੱਚ ਤਬਦੀਲੀ ਕਰਨ ਨਾਲ ਹੋਰ FuncƟons ਪ�ਭਾਿਵਤ ਨਹ�

ਹੁੰ ਦ।ੇ

FuncƟons ਦੀਆਂ ਿਕਸਮ� (Types of FuncƟons):

1. Library FuncƟons (ਲਾਇਬ�ਰੇੀ ਫੰਕ©ਨ):

C++ ਿਵੱਚ ਪੂਰੀ ਤਰ�� ਬਣੇ ਹੋਏ FuncƟons, ਿਜਵ�:

 sqrt() – ਵਰਗਮੂਲ

 pow() – ਘਾਤ

 cin, cout – ਇਨਪਟੁ/ਆਉਟਪਟੁ

2. User-defined FuncƟons (ਵਰਤ�ਕਾਰ ਵੱਲ� ਬਣਾਏ ਗਏ):

ਯੂਜ਼ਰ ਦਆੁਰਾ ਿਨਰਧਾਰਤ ਕੰਮ� ਲਈ ਬਣਾਏ ਜ�ਦੇ FuncƟons।

Examples (ਉਦਾਹਰਨ�):

 චඡ Return ਨਾ ਹੋਵ,ੇ ਨਾ ਹੀ Parameters:

void display() {
 cout << "Hello";
}

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 11

 චඡ Return ਹੋਵ,ੇ ਪਰ Parameters ਨਾ ਹੋਣ:

int getValue() {
 return 10;
}
 චඡ Return ਵੀ ਹੋਵ ੇਅਤ ੇParameters ਵੀ ਹੋਣ:

int sum(int a, int b) {
 return a + b;
}

ਸੰਖੇਪ ਿਵੱਚ: FuncƟons ਪ�ੋਗਰਾਮ ਦ ੇਢ�ਚ ੇਨੰੂ ਸੁਧਾਰਦੇ ਹਨ ਅਤ ੇਵੱਡ ੇਪ�ਜੋਕੈਟ ਲਈ ਬਹਤੁ ਲਾਭਕਾਰੀ ਹੁੰ ਦ ੇਹਨ। FuncƟons

ਦੀ ਸਹੀ ਵਰਤ� ਸਾਫ਼, ਸਮਝਦਾਰ ਅਤੇ ਦੋਹਰਾਏ ਜਾ ਸਕਣ ਵਾਲਾ ਕਡੋ ਿਲਖਣ ਿਵੱਚ ਮਦਦ ਕਰਦੀ ਹ।ੈ

Q. Write short note on parameter passing in funcƟons. (Nov 20)
Ans. Parameter passing in C++ refers to how arguments are sent to funcƟons when they are called. It
allows funcƟons to accept input values and opƟonally modify them. There are two primary methods of
parameter passing in C++:

1. Pass by Value:

 In this method, a copy of the actual argument is passed to the funcƟon.
 Any changes made to the parameter inside the funcƟon do not affect the original variable.
 It is safe, as original data is protected.

Example:
void update(int x) {
 x = x + 5; // only local x is changed
}

2. Pass by Reference:

 Instead of copying, the actual memory address of the argument is passed using reference (&).
 Changes made in the funcƟon do affect the original variable.
 Useful when the funcƟon needs to modify input or avoid unnecessary copying (especially for

large objects).
Example:
void update(int &x) {
 x = x + 5; // original x is changed
}

Conclusion: Choosing between pass by value and reference depends on whether the original data needs
to be modified. C++ also supports pointers as an alternaƟve way to pass by reference, offering more
control in memory management.
C++ ਿਵੱਚ Parameter Passing (ਪੈਰਾਮੀਟਰ ਪਾਿਸੰਗ): C++ ਿਵੱਚ Parameter Passing ਦਾ ਅਰਥ ਹ ੈ ਿਕ ਿਕਵ�

arguments (ਿਦੱਤ ੇਗਏ ਮੱੁਲ) ਇੱਕ FuncƟon ਨੰੂ ਕਾਲ ਕਰਦ ੇਸਮ� ਭੇਜੇ ਜ�ਦੇ ਹਨ। ਇਹ FuncƟons ਨੰੂ ਇਨਪਟੁ ਲੈਣ ਅਤ ੇ

ਜ਼ਰੂਰਤ ਪ�ਣ ਤੇ ਮੁੱ ਲ� ਨੰੂ ਤਬਦੀਲ ਕਰਨ ਦੀ ਸਹਲੂਤ ਿਦੰਦਾ ਹ।ੈ
C++ ਿਵੱਚ ਦੋ ਮੁੱ ਖ ਤਰੀਕ ੇਹਨ:

1. Pass by Value (ਮੱੁਲ ਰਾਹ� ਭੇਜਣਾ):

 ਇਸ ਤਰੀਕ ੇਿਵੱਚ, argument ਦੀ ਇੱਕ ਕਾਪੀ FuncƟon ਨੰੂ ਭੇਜੀ ਜ�ਦੀ ਹ।ੈ

 FuncƟon ਦੇ ਅੰਦਰ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਬਦਲਾਅ ਮੂਲ variable 'ਤ ੇਪ�ਭਾਵ ਨਹ� ਪਾ�ਦ।ੇ

 ਇਹ ਸੁਰੱਿਖਅਤ ਹੁੰ ਦਾ ਹ ੈਿਕ�ਿਕ ਅਸਲੀ ਡਾਟਾ ਸੁਰੱਿਖਅਤ ਰਿਹੰਦਾ ਹ।ੈ

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 12

 චඡ ਉਦਾਹਰਨ:

void update(int x) {
 x = x + 5; // ਿਸਰਫ x ਦੀ ਕਾਪੀ ਿਵੱਚ ਬਦਲਾਅ

}

2. Pass by Reference (ਹਵਾਲੇ ਰਾਹ� ਭੇਜਣਾ):

 ਇਸ ਤਰੀਕ ੇਿਵੱਚ, argument ਦੀ ਮੈਮੋਰੀ locaƟon (address) FuncƟon ਨੰੂ ਭੇਜੀ ਜ�ਦੀ ਹ,ੈ & ਦੀ ਵਰਤ� ਕਰਕ।ੇ

 FuncƟon ਦੇ ਅੰਦਰ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਬਦਲਾਅ ਅਸਲੀ variable ਨੰੂ ਪ�ਭਾਿਵਤ ਕਰਦ ੇਹਨ।

 ਇਹ ਤਦ� ਲਾਭਕਾਰੀ ਹੁੰ ਦਾ ਹ ੈਜਦ�:

o FuncƟon ਨĂ input ਨੰੂ ਤਬਦੀਲ ਕਰਨਾ ਹੋਵ।ੇ

o ਜ� ਵੱਡੀ Object ਦੀ ਕਾਪੀ ਬਣਾਉਣ ਤ� ਬਚਣਾ ਹੋਵ।ੇ
 චඡ ਉਦਾਹਰਨ:

void update(int &x) {
 x = x + 5; // ਅਸਲੀ x now changed

}

ਨਤੀਜਾ (Conclusion):

 ਜੇ ਅਸਲੀ ਡਾਟਾ ਨੰੂ ਤਬਦੀਲ ਨਹ� ਕਰਨਾ, ਤ� Pass by Value ਵਰਤ।ੋ

 ਜੇ ਤਬਦੀਲੀ ਕਰਨੀ ਹੋਵ ੇਜ� efficient code ਚਾਹੀਦਾ ਹੋਵ,ੇ ਤ� Pass by Reference ਵਰਤ।ੋ
 C++ ਿਵੱਚ pointers ਦੀ ਵਰਤ� ਕਰਕ ੇਵੀ reference ਦੇ ਤਰੀਕ ੇਨਾਲ values pass ਕੀਤੀਆ ਂਜਾ ਸਕਦੀਆ ਂਹਨ, ਜੋ ࢘ࢗ࢖࢕࢔

memory management 'ਤੇ ਹਰੋ control ਿਦੰਦ ੇਹਨ।

Q. What is the difference between a while and a do while loop? Explain with examples. (Nov 22)
Ans. In C++, both while and do-while loops are used for repeaƟng a block of code as long as a specified
condiƟon is true. However, they differ in how and when the condiƟon is evaluated.

while Loop:

 The condiƟon is checked before the loop body executes.
 If the condiƟon is false iniƟally, the loop body may never execute.

Syntax:
int i = 1;
while (i <= 3) {
 cout << i << " ";
 i++;
}
Output: 1 2 3

do-while Loop:

 The loop body is executed at least once, regardless of the condiƟon.
 The condiƟon is checked aŌer execuƟng the loop body.

Syntax:
int i = 1;
do {
 cout << i << " ";
 i++;
} while (i <= 3);

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 13

Output: 1 2 3

Key Difference:
 while loop: Entry-controlled (condiƟon checked first).
 do-while loop: Exit-controlled (condiƟon checked aŌer execuƟon).

Use do-while when the loop must run at least once, such as in menu-driven programs or user input
validaƟon.
C++ ਿਵੱਚ while ਅਤ ੇdo-while ਲਪੂ

C++ ਿਵੱਚ while ਅਤ ੇdo-while ਲੂਪ ਦਵੋ� ਇੱਕ ਕੋਡ ਦੇ block ਨੰੂ ਦੁਹਰਾਉਣ ਲਈ ਵਰਤ ੇਜ�ਦੇ ਹਨ ਜਦ ਤੱਕ ਕਈੋ ਿਦੱਤੀ ਗਈ

condiƟon true ਰਿਹੰਦੀ ਹ।ੈ ਪਰ ਦੋਹ� ਿਵਚ condiƟon check ਕਰਨ ਦਾ ਤਰੀਕਾ ਵੱਖਰਾ ਹੁੰ ਦਾ ਹ।ੈ

 ࿨࿩࿪ while Loop:

 CondiƟon ਪਿਹਲ� check ਕੀਤੀ ਜ�ਦੀ ਹੈ।

 ਜੇ condiƟon ©ੁਰ ੂਤ� hi false ਹਵੋ,ੇ ਤ� loop ਦ ੇਅੰਦਰਲਾ code ਇਕ ਵਾਰੀ ਵੀ execute ਨਹ� ਹੰੁਦਾ।

 :Syntax ݝݜݛݚ
int i = 1;
while (i <= 3) {
 cout << i << " ";
 i++;
}
 :Output ۰ۯۮۭ
1 2 3

 ࿨࿩࿪ do-while Loop:

 Loop body ਪਿਹਲ� ਇੱਕ ਵਾਰੀ execute ਹੰੁਦੀ ਹੈ, ਭਾਵ� condiƟon false ਹੋਵੇ।

 CondiƟon बाद ਿਵੱਚ check ਹੰੁਦੀ ਹੈ।

 :Syntax ݝݜݛݚ
int i = 1;
do {
 cout << i << " ";
 i++;
} while (i <= 3);
 :Output ۰ۯۮۭ
1 2 3

 ၧၨၩ ਮੱੁਖ ਅੰਤਰ (Key Difference):

Feature while Loop do-while Loop

Condition Check
ਪਿਹਲ� (Entry-

Controlled)
ਬਾਅਦ ਿਵੱਚ (Exit-Controlled)

Execution
Guarantee

0 ਜ� ਵੱਧ ਵਾਰ ਘੱਟ-ੋਘੱਟ 1 ਵਾਰ

ਉਦ©ੇ (Use Case)
ਜਦ ©ਰਤ ਪਿਹਲ� ਹੀ ਪਤਾ

ਹੋਵ ੇ
ਜਦ ੋ code ਇੱਕ ਵਾਰੀ ਚਲਾਉਣਾ ਜ਼ਰੂਰੀ ਹੋਵੇ (ਿਜਵ� ਿਕ menu-

driven programs)

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 14

ੈ do-while loop ਨੰੂ ਉਥ ੇਵਰਿਤਆ ਜ�ਦਾ ਹ ܜܛܚ :ਉਪਯੋਗਤਾ (When to Use) ࢘ࢗ࢖࢕࢔ ਿਜੱਥ ੇ loop ਘੱਟ-ੋਘੱਟ ਇੱਕ ਵਾਰੀ

ਚਲਾਉਣੀ ਲਾਜ਼ਮੀ ਹੋਵ,ੇ ਿਜਵ� user input validaƟon ਜ� menus ਿਵੱਚ।

Q. DifferenƟate between the following: (Nov 20)
a) Formal and actual arguments
b) Call by value and Call by reference.
Ans. a) Formal and Actual Arguments:
Formal arguments are variables listed in a funcƟon's definiƟon that receive values when the funcƟon is
called. Actual arguments are the real values or variables passed to the funcƟon during the funcƟon call.
Example:
void add(int a, int b); // a, b are formal arguments
add(5, 10); // 5, 10 are actual arguments
Formal arguments exist only within the funcƟon and are treated like local variables. Actual arguments
are used in the calling funcƟon. The values of actual arguments are copied or referenced depending on
the parameter passing method used.

b) Call by Value and Call by Reference:
In call by value, a copy of the actual argument is passed to the funcƟon. Changes made inside the
funcƟon do not affect the original variable.
Example:
void modify(int x) { x = 10; }
In call by reference, the address (reference) of the actual argument is passed. Changes made in the
funcƟon do affect the original variable.
Example:
void modify(int &x) { x = 10; }
Call by value is safe but doesn't allow modificaƟon of original data, while call by reference is more
efficient and allows in-place changes.
a) Formal ਅਤ ੇActual Arguments: Formal arguments ਉਹ variables ਹੁੰ ਦੇ ਹਨ ਜੋ funcƟon ਦੀ definiƟon ਿਵੱਚ

ਿਲਖ ੇਜ�ਦੇ ਹਨ ਅਤ ੇ funcƟon call ਸਮ� ਇਹਨ� ਨੰੂ value ਿਮਲਦੀ ਹ।ੈ Actual arguments ਉਹ ਅਸਲੀ values ਜ�

variables ਹੁੰ ਦ ੇਹਨ ਜੋ funcƟon ਨੰੂ call ਕਰਦ ੇਸਮ� ਿਦੱਤ ੇਜ�ਦੇ ਹਨ।

ਉਦਾਹਰਨ:

void add(int a, int b); // a, b - formal arguments
add(5, 10); // 5, 10 - actual arguments
Formal arguments funcƟon ਦੇ ਅੰਦਰ ਹੀ ਰਿਹੰਦ ੇਹਨ ਅਤ ੇlocal variables ਵ�ਗ ਕੰਮ ਕਰਦੇ ਹਨ। Actual arguments

calling funcƟon ਿਵੱਚ ਵਰਤ ੇਜ�ਦੇ ਹਨ। Values pass ਕਰਨ ਦਾ ਤਰੀਕਾ (copy ਜ� reference) parameter passing

technique 'ਤੇ ਿਨਰਭਰ ਕਰਦਾ ਹ।ੈ

b) Call by Value ਅਤ ੇCall by Reference: Call by value ਿਵੱਚ actual argument ਦੀ copy funcƟon ਨੰੂ ਿਦੱਤੀ ਜ�ਦੀ

ਹ।ੈ FuncƟon ਿਵੱਚ ਕੀਤੇ ਗਏ ਤਬਦੀਲੀਆ ਂoriginal variable 'ਤੇ ਅਸਰ ਨਹ� ਕਰਦੀਆਂ।
ਉਦਾਹਰਨ:

void modify(int x) { x = 10; }
Call by reference ਿਵੱਚ variable ਦਾ address (reference) funcƟon ਨੰੂ ਿਦੱਤਾ ਜ�ਦਾ ਹ।ੈ FuncƟon ਿਵੱਚ ਕੀਤ ੇ

ਤਬਦੀਲੀਆਂ actual variable ਨੰੂ ਪ�ਭਾਿਵਤ ਕਰਦੀਆ ਂਹਨ।
ਉਦਾਹਰਨ:

void modify(int &x) { x = 10; }

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 15

Call by value सुरͯ¢त ਹ ੈਪਰ original value ਨੰੂ change ਨਹ� ਕਰਦਾ। Call by reference efficient ਹ ੈਅਤ ੇdirectly

value ਿਵੱਚ change ਕਰਦਾ ਹ।ੈ

Q. Write difference between call by value, call by address and call by reference explain with the help
examples. (Nov 24)
Ans. In C++, funcƟon arguments can be passed in three main ways: call by value, call by address, and
call by reference. These differ in how the funcƟon accesses and modifies data.

1. Call by Value:

 A copy of the variable is passed to the funcƟon.
 Changes inside the funcƟon do not affect the original variable.

Example:
void modify(int x) { x = 10; }
Calling modify(a) does not change the value of a.

2. Call by Address:

 The memory address of the variable is passed using pointers.
 The funcƟon can modify the original value by dereferencing the pointer.

Example:
void modify(int *x) { *x = 10; }
Calling modify(&a) changes the value of a.

3. Call by Reference:

 A reference (alias) of the variable is passed using &.
 Changes inside the funcƟon directly affect the original variable.

Example:
void modify(int &x) { x = 10; }
Calling modify(a) updates the value of a.

Summary:

Type Can Modify Original? Syntax Used
Call by Value No func(int x)
Call by Address Yes func(int *x)
Call by Reference Yes func(int &x)

C++ ਿਵੱਚ FuncƟon Arguments ਪਾਸ ਕਰਨ ਦ ੇਿਤੰਨ ਤਰੀਕ:ੇ

C++ ਿਵੱਚ funcƟon arguments ਿਤੰਨ ਮੁੱ ਖ ਤਰੀਿਕਆ ਂਨਾਲ ਪਾਸ ਕੀਤੇ ਜ�ਦੇ ਹਨ: Call by Value, Call by Address, ਅਤ ੇ

Call by Reference। ਇਹ ਿਤੰਨĄ ਤਰੀਕ ੇdata ਨੰੂ access ਅਤ ੇmodify ਕਰਨ ਿਵੱਚ ਵੱਖ-ਵੱਖ ਤਰੀਕ ੇਨਾਲ ਕੰਮ ਕਰਦ ੇਹਨ।

1. Call by Value (ਮੂਲ ਦ ੇਮੱੁਲ ਰਾਹ�):

 Variable ਦੀ ਇਕ copy funcƟon ਨੰੂ ਿਦੱਤੀ ਜ�ਦੀ ਹ।ੈ

 FuncƟon ਿਵੱਚ ਹਣੋ ਵਾਲੀਆਂ ਤਬਦੀਲੀਆ ਂoriginal variable ਨੰੂ ਪ�ਭਾਿਵਤ ਨਹ� ਕਰਦੀਆਂ।
ਉਦਾਹਰਨ:

void modify(int x) { x = 10; }
modify(a) ਨੰੂ call ਕਰਨ 'ਤੇ a ਦੀ value change ਨਹ� ਹੁੰ ਦੀ।

2. Call by Address (ਐਡਰੈ{ਸ ਰਾਹ�):

 Variable ਦਾ memory address funcƟon ਨੰੂ pointer ਰਾਹ� ਿਦੱਤਾ ਜ�ਦਾ ਹ।ੈ

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 16

 FuncƟon pointer ਨੰੂ dereference ਕਰਕ ੇoriginal value ਨੰੂ change ਕਰ ਸਕਦਾ ਹ।ੈ
ਉਦਾਹਰਨ:

void modify(int *x) { *x = 10; }
modify(&a) ਨੰੂ call ਕਰਨ 'ਤ ੇa ਦੀ value change ਹ ੋਜ�ਦੀ ਹ।ੈ

3. Call by Reference (ਹਵਾਲੇ ਰਾਹ�):

 Variable ਦਾ reference (alias) funcƟon ਨੰੂ ਿਦੱਤਾ ਜ�ਦਾ ਹ।ੈ

 FuncƟon ਿਵੱਚ ਹਈੋ ਤਬਦੀਲੀ seedhi original variable ਨੰੂ ਪ�ਭਾਿਵਤ ਕਰਦੀ ਹ।ੈ
ਉਦਾਹਰਨ:

void modify(int &x) { x = 10; }
modify(a) ਨੰੂ call ਕਰਨ 'ਤੇ a ਦੀ value change ਹ ੋਜ�ਦੀ ਹ।ੈ

ਸੰਖੇਪ ਤੌਰ 'ਤ:ੇ

ਤਰੀਕਾ Original Value Change ਹੋਦੀ? Syntax

Call by Value ਨਹ� func(int x)

Call by Address ਹ� func(int *x)

Call by Reference ਹ� func(int &x)

Q. Write a program to print table of a number. (Nov 24)
Ans. #include <iostream>
using namespace std;

int main() {
 int num;

 // Input from user
 cout << "Enter a number to print its table: ";
 cin >> num;

 // Print table using loop
 cout << "\nMulƟplicaƟon Table of " << num << ":\n";
 for (int i = 1; i <= 10; i++) {
 cout << num << " x " << i << " = " << num * i << endl;
 }

 return 0;
}
This program prints the mulƟplicaƟon table of any number provided by the user.
Steps involved:

1. The program begins by asking the user to enter an integer.
2. It uses a for loop that runs from 1 to 10.
3. In each iteraƟon, the number is mulƟplied by the loop counter (i), and the result is printed in a

standard format.
Sample Output for input 5:
5 x 1 = 5
5 x 2 = 10
...

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 17

5 x 10 = 50
This program demonstrates use of cin for input, cout for output, and for loop for iteraƟon — making it
a basic yet essenƟal C++ example for beginners.
ਇਹ Program ਿਕਸੇ ਵੀ ਨੰਬਰ ਦੀ ਗੁਣਾ ਪ�ਤੀ (MulƟplicaƟon Table) ਿਪ�ੰ ਟ ਕਰਦਾ ਹੈ ਜ ੋਯਜ਼ੂਰ ਦੁਆਰਾ ਿਦੱਤਾ ਜ�ਦਾ

ਹੈ।

ਕੰਮ ਕਰਨ ਦ ੇਕਦਮ:

1. Program ਸਭ ਤ� ਪਿਹਲ� ਯੂਜ਼ਰ ਤ� ਇੱਕ ਪੂਰਨ ਅੰਕ (integer) ਮੰਗਦਾ ਹ।ੈ

2. ਿਫਰ ਇੱਕ for loop ਚਲਦਾ ਹ ੈਜੋ 1 ਤ� 10 ਤੱਕ ਜ�ਦਾ ਹ।ੈ
3. ਹਰ iteraƟon ਿਵੱਚ, ਉਹ ਨੰਬਰ loop ਦ ੇcounter (i) ਨਾਲ ਗਣੁਾ ਕੀਤਾ ਜ�ਦਾ ਹ ੈਅਤ ੇਨਤੀਜਾ ਇੱਕ standard

ਫਾਰਮਟੈ ਿਵੱਚ ਿਪ�ੰ ਟ ਕੀਤਾ ਜ�ਦਾ ਹ।ੈ

ਉਦਾਹਰਨ (Input = 5):

5 x 1 = 5
5 x 2 = 10
5 x 3 = 15
...
5 x 10 = 50

ਇਸ Program ਿਵੱਚ ਇਹ Concepts ਵਰਤ ੇਗਏ ਹਨ:

 cin → ਯੂਜ਼ਰ ਤ� input ਲੈਣ ਲਈ

 cout → ਆਉਟਪੁੱ ਟ ਿਵਖਾਉਣ ਲਈ

 for loop → 1 ਤ� 10 ਤੱਕ iterate ਕਰਨ ਲਈ

ਇਹ ਇੱਕ ਬਹੁਤ ਹੀ ਆਸਾਨ ਅਤੇ ਮੁਢਲੀ C++ ਦੀ ਉਦਾਹਰਨ ਹੈ ਜ ੋBeginners ਲਈ ਬੇਹੱਦ ਲਾਭਕਾਰੀ ਹੈ।

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 18

Unit 3: Object Oriented Programming
Short Answer QuesƟons:

Q. Why C++ is called object-oriented programming? (Nov 20)
Ans. C++ supports concepts like classes, objects, inheritance, and encapsulaƟon, which makes it an
object-oriented programming language.
C++ ਿਵਚ classes, objects, inheritance ਅਤ ੇ encapsulaƟon ਵਰਗੀਆ ਂ ਿਵ©ੇ©ਤਾਵ� ਹੁੰ ਦੀਆ ਂਹਨ, ਜੋ ਇਸਨੰੂ ਇੱਕ

object-oriented programming language ਬਣਾ�ਦੀਆ ਂਹਨ।

Q. What is operator overloading? (Nov 20)
Ans. Operator overloading allows redefining the meaning of operators for user-defined data types like
classes.
Operator overloading ਦੇ ਜ਼ਰੀਏ ਅਸ� user-defined data types (ਿਜਵ� ਿਕ classes) ਲਈ ਓਪਰਟੇਰ� ਦੀ ਪਿਰਭਾ©ਾ ਨੰੂ

ਦੁਬਾਰਾ ਿਨਰਧਾਰਤ ਕਰ ਸਕਦ ੇਹ�।

Q. Destructor (Nov 24)
Ans. A destructor is a special member funcƟon that is automaƟcally called when an object is destroyed
to free resources.
Destructor ਇੱਕ ਖਾਸ member funcƟon ਹੁੰ ਦੀ ਹ ੈਜੋ ਿਕਸ ੇobject ਦ ੇਨ©ਟ ਹਣੋ ਸਮ� ਆਪਣੇ ਆਪ ਕਾਲ ਹੁੰ ਦੀ ਹ ੈਅਤ ੇ

ਸਮੱਸਾਧਨ� (resources) ਨੰੂ ਖਾਲੀ ਕਰਦੀ ਹ।ੈ

Q. Friend class (Nov 24)
Ans. A friend class can access the private and protected members of another class in which it is declared
as a friend.
Friend class ਉਹ ਕਲਾਸ ਹੁੰ ਦੀ ਹ ੈਜੋ ਿਕਸ ੇਹੋਰ ਕਲਾਸ ਦੇ private ਅਤ ੇprotected ਮ�ਬਰ� ਨੰੂ ਐਕਸ{ੈਸ ਕਰ ਸਕਦੀ ਹ,ੈ ਜਦ�

ਿਕ ਉਹ ਉਸ ਿਵੱਚ friend ਵਜ� ਿਡਕਲੇਅਰ ਕੀਤੀ ਗਈ ਹਵੋ।ੇ

Q. FuncƟon overloading. (Nov 24)
ans. FuncƟon overloading allows mulƟple funcƟons with the same name but different parameter lists
within the same scope.
FuncƟon overloading ਇੱਕ ੋਨਾਮ ਵਾਲੀਆਂ ਕਈ funcƟons ਨੰੂ ਇਕ ੋscope ਿਵੱਚ ਪਿਰਭਾ©ਤ ਕਰਨ ਦੀ ਆਿਗਆ ਿਦੰਦੀ ਹ,ੈ

ਪਰ ਉਨ� � ਦੇ parameter lists ਵੱਖ-ਵੱਖ ਹੋਣੇ ਚਾਹੀਦ ੇਹਨ।

Q. When do we need iterator? (Nov 22)
Ans. Iterators are used to traverse containers like arrays, vectors, or lists in a standard and consistent
way.
Iterators ਨੰੂ arrays, vectors ਜ� lists ਵਰਗੇ containers ਿਵੱਚ ਰੇਖੀਤ ਢੰਗ ਨਾਲ ਟ�ਵੈਰਸ ਕਰਨ ਲਈ ਵਰਿਤਆ ਜ�ਦਾ ਹ।ੈ

Q. What is the usage of flush in C++ programming? (Nov 22)
Ans. flush is used to force the output buffer to write all data to the console or file immediately.
flush ਨੰੂ output buffer ਦੀ ਸਮੁੱ ਚੀ ਸਮੱਗਰੀ ਨੰੂ ਤੁਰੰਤ console ਜ� file ਿਵੱਚ ਿਲਖਵਾਉਣ ਲਈ ਵਰਿਤਆ ਜ�ਦਾ ਹ।ੈ

Q. Is destructor overloading possible? If yes then explain and if no then why? (Nov 22)
Ans. No, destructor overloading is not allowed in C++ because a class can have only one destructor with
a fixed signature.
ਨਹ�, C++ ਿਵੱਚ destructor overloading ਦੀ ਆਿਗਆ ਨਹ� ਹ ੈਿਕ�ਿਕ ਇੱਕ ਕਲਾਸ ਿਵੱਚ ਿਸਰਫ਼ ਇੱਕ ਹੀ destructor ਹ ੋ

ਸਕਦੀ ਹ ੈਿਜਸ ਦੀ signature fixed ਹੁੰ ਦੀ ਹ।ੈ

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 19

Q. Define data abstracƟon. (Nov 22)
Ans. Data abstracƟon means exposing only essenƟal features while hiding internal implementaƟon
details in a program.
Data abstracƟon ਦਾ ਅਰਥ ਹ ੈਿਕ ਪ�ੋਗ�ਾਮ ਿਵੱਚ ਿਸਰਫ਼ ਜ਼ਰੂਰੀ ਿਵ©ੇ©ਤਾਵ� ਨੰੂ ਿਵਖਾਉਣਾ ਅਤ ੇਅੰਦਰੂਨੀ implementaƟon

ਨੰੂ ਛੁਪਾਉਣਾ।

Q. How MulƟlevel Inheritance is different from MulƟple Inheritance? (Nov 22)
Ans. MulƟlevel inheritance involves a class derived from another derived class, while mulƟple
inheritance means a class inherits from two or more base classes.
MulƟlevel inheritance ਿਵੱਚ ਇੱਕ ਕਲਾਸ, ਦੂਜ ੇ ਿਡਰਾਈਵਡ ਕਲਾਸ ਤ� ਿਵਰਾਸਤ ਲ�ਦੀ ਹ।ੈ

MulƟple inheritance ਿਵੱਚ ਇੱਕ ਕਲਾਸ ਦੋ ਜ� ਇਸ ਤ� ਵੱਧ base classes ਤ� ਿਵਰਾਸਤ ਲ�ਦੀ ਹ।ੈ

Long Answer QuesƟons:
Q. Explain characterisƟcs of Object-Oriented Programming. (Nov 24)
Ans. Object-Oriented Programming (OOP) is a programming paradigm based on the concept of
"objects", which can contain data and code. It helps in organizing complex programs, promoƟng
reusability, scalability, and maintainability. The key characterisƟcs of OOP are:

1. EncapsulaƟon: It binds data and funcƟons into a single unit called a class. It hides internal details
and exposes only necessary parts through access modifiers (public, private, protected).

2. AbstracƟon: It allows programmers to focus on essenƟal features without dealing with
background complexity. Classes can expose required funcƟonality while hiding implementaƟon
details.

3. Inheritance: It enables a class (derived class) to inherit properƟes and behaviors from another
class (base class), allowing code reuse and hierarchical classificaƟon.

4. Polymorphism: It allows objects to take mulƟple forms. This can be achieved through funcƟon
overloading, operator overloading, and virtual funcƟons. It enables one interface to control
access to different types of objects.

5. Modularity: Programs can be divided into smaller, independent units (classes and objects),
which makes tesƟng and maintenance easier.

6. Reusability: Once a class is wriƩen, it can be reused across programs or extended through
inheritance without rewriƟng code.

OOP improves soŌware design by making it more structured and close to real-world modeling.
Object-Oriented Programming (OOP) ਕੀ ਹੈ? Object-Oriented Programming (OOP) ਇੱਕ ਐਸਾ programming

ਢੰਗ ਹ ੈਜੋ "objects" ਦੇ ਆਧਾਰ 'ਤੇ ਿਨਰਭਰ ਕਰਦਾ ਹ।ੈ ਇਹ objects ਿਵੱਚ data (ਡਾਟਾ) ਅਤ ੇcode (ਫੰਕ©ਨ/ਤਰੀਕ)ੇ ਹ ੋ

ਸਕਦ ੇਹਨ। OOP ਦੀ ਵਰਤ� ਕਰਕ ੇਲੰਮ ੇਤੇ ਕਿਠਨ ਪ�ੋਗਰਾਮ ਆਸਾਨੀ ਨਾਲ ਸੰਭਾਲੇ, ਦੁਬਾਰਾ ਵਰਤ ੇਅਤ ੇਵਧਾਏ ਜਾ ਸਕਦ ੇਹਨ।

OOP ਦੀਆਂ ਮੱੁਖ ਿਵ©ੇ©ਤਾਵ�:

1. EncapsulaƟon (ਇੰਕਪੈਸੂਲੇ©ਨ): ਇਹ ਡਾਟਾ ਅਤ ੇਫੰਕ©ਨ� ਨੰੂ ਇੱਕ ਹੀ ਯੂਿਨਟ (class) ਿਵੱਚ ਜੋੜਦਾ ਹ।ੈ ਇਹ ਅੰਦਰੂਨੀ

ਜਾਣਕਾਰੀ ਨੰੂ ਲੁਕਾ ਕ ੇਿਸਰਫ਼ ਜ਼ਰਰੂੀ ਿਹੱਸਾ ਹੀ ਉਪਲਬਧ ਕਰਵਾ�ਦਾ ਹ।ੈ ܜܛܚ ਿਜਵ�: public, private, protected access

modifiers ਦੀ ਵਰਤ�।

2. AbstracƟon (ਐਬਸਟ�ੈਕ©ਨ): ਇਹ ਵਰਤ�ਕਾਰ ਨੰੂ ਿਸਰਫ਼ ਜ਼ਰਰੂੀ ਜਾਣਕਾਰੀ ਉਪਲਬਧ ਕਰਵਾ�ਦਾ ਹ ੈਅਤ ੇਿਪਛਲੇ ਕੰਮ

ਦੀ ਜਿਟਲਤਾ ਨੰੂ ਛੁਪਾ�ਦਾ ਹ।ੈ ܜܛܚ ਿਜਵ�: ਇੱਕ car ਦੀ driving funcƟonality ਵੇਖੀ ਜਾ ਸਕਦੀ ਹ,ੈ ਪਰ engine ਦੀ ਅੰਦਰੂਨੀ

ਬਣਾਵਟ ਨਹ�।

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 20

3. Inheritance (ਇਨਹੈਰੀਟ�ਸ): ਇਸਦ ੇਜ਼ਰੀਏ ਇੱਕ class (Derived class) ਦੂਜ ੇclass (Base class) ਤ� ਗੁਣ (properƟes)

ਅਤ ੇਿਵਵਹਾਰ (funcƟons) ਲੈ ਸਕਦੀ ਹ।ੈ ܜܛܚ ਇਹ ਦਬੁਾਰਾ ਕਡੋ ਿਲਖਣ ਦੀ ਲੋੜ ਘਟਾ�ਦਾ ਹ।ੈ

4. Polymorphism (ਪਲੋੀਮੋਰਿਫ਼ਜ਼ਮ): ਇਹ ਇੱਕ object ਨੰੂ ਕਈ ਰੂਪ ਿਵੱਚ ਵਰਤਣ ਦੀ ਸਹਲੂਤ ਿਦੰਦਾ ਹ।ੈ ܜܛܚ ਿਜਵ�:

FuncƟon overloading, Operator overloading, Virtual funcƟons ਆਿਦ।

5. Modularity (ਮੋਡੀ◌ੂਲਿਰਟੀ): ਿਕਸ ੇਵੀ program ਨੰੂ ਛੋਟ ੇਛਟੋ ੇਿਹੱਿਸਆ ਂ(classes, objects) ਿਵੱਚ ਵੰਡਣਾ ਜੋ ਿਕ ਆਲਗ

ਆਲਗ ਕੰਮ ਕਰਦ ੇਹਨ। ܜܛܚ ਇਹ tesƟng ਅਤ ੇmaintenance ਆਸਾਨ ਬਣਾ�ਦਾ ਹ।ੈ

6. Reusability (ਰੀਯੂਜ਼ਿੇਬਿਲਟੀ): ਜੋ class ਇੱਕ ਵਾਰ ਬਣਾਈ ਜ�ਦੀ ਹ,ੈ ਉਹਨੰੂ ਬਾਅਦ ਿਵੱਚ ਕਈ programs ਿਵੱਚ ਦਬੁਾਰਾ

ਵਰਿਤਆ ਜਾ ਸਕਦਾ ਹ ੈਜ� inheritance ਰਾਹ� ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹ।ੈ

ਨਤੀਜਾ (Conclusion): OOP programming ਨੰੂ ਿਵਅਵਸਿਥਤ, ਦਬੁਾਰਾ ਵਰਤਣਯੋਗ ਅਤ ੇਆਸਾਨੀ ਨਾਲ ਸੰਭਾਲਯਗੋ

ਬਣਾ�ਦਾ ਹ ੈਅਤ ੇਇਹ ਅਸਲ ਜਗਤ ਦੀ ਸਮਝ ਨੰੂ code ਿਵੱਚ ਿਲਆ�ਦਾ ਹੈ।

Q. Explain constructor overloading. (Nov 24)
Ans. Constructor overloading in C++ is a feature that allows a class to have more than one constructor
with different sets of parameters. It enables objects to be iniƟalized in mulƟple ways using the same
constructor name but with different argument lists.
Constructors are special member funcƟons that are automaƟcally called when an object of a class is
created. Overloading constructors improves flexibility and reusability of code.

Example:
#include <iostream>
using namespace std;

class Student {
 int id;
 string name;

public:
 // Default constructor
 Student() {
 id = 0;
 name = "Unknown";
 }

 // Parameterized constructor with one argument
 Student(int i) {
 id = i;
 name = "No Name";
 }

 // Parameterized constructor with two arguments
 Student(int i, string n) {
 id = i;
 name = n;
 }

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 21

 void display() {
 cout << "ID: " << id << ", Name: " << name << endl;
 }
};

int main() {
 Student s1;
 Student s2(101);
 Student s3(102, "Alice");

 s1.display();
 s2.display();
 s3.display();

 return 0;
}

In this example, the Student class has three constructors, each serving different iniƟalizaƟon needs. The
compiler differenƟates them based on the number and type of parameters.
Constructor Overloading in C++ (ਕਨਸਟ�ਕਟਰ ਓਵਰਲੋਿਡੰਗ)

C++ ਿਵੱਚ Constructor Overloading ਇੱਕ ਿਵ©ੇ©ਤਾ ਹ ੈਜੋ ਇੱਕ class ਨੰੂ ਵੱਖ-ਵੱਖ ਤਰੀਿਕਆ ਂਨਾਲ objects ਨੰੂ iniƟalize

ਕਰਨ ਦੀ ਸਹਲੂਤ ਿਦੰਦੀ ਹ।ੈ ਇਸ ਿਵੱਚ ਇੱਕ ੋਨ� ਵਾਲੇ ਕਈ constructors ਹ ੋਸਕਦੇ ਹਨ ਪਰ ਉਹਨ� ਦੇ parameters ਵੱਖ-

ਵੱਖ ਹੁੰ ਦ ੇਹਨ।

Constructors ਉਹ special member funcƟons ਹੁੰ ਦ ੇਹਨ ਜੋ object ਬਣਦ ੇਸਮ� ਆਟੋਮਿੈਟਕ ਚੱਲਦ ੇਹਨ। Constructor

overloading ਨਾਲ code ਿਵੱਚ flexibility ਅਤ ੇreusability ਵਧਦੀ ਹ।ੈ

ਉਦਾਹਰਨ (Example):

#include <iostream>
using namespace std;

class Student {
 int id;
 string name;

public:
 // Default constructor
 Student() {
 id = 0;
 name = "Unknown";
 }

 // ਇੱਕ argument ਵਾਲਾ constructor

 Student(int i) {
 id = i;
 name = "No Name";
 }

 // ਦ ੋarguments ਵਾਲਾ constructor

 Student(int i, string n) {

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 22

 id = i;
 name = n;
 }

 void display() {
 cout << "ID: " << id << ", Name: " << name << endl;
 }
};

int main() {
 Student s1;
 Student s2(101);
 Student s3(102, "Alice");

 s1.display();
 s2.display();
 s3.display();

 return 0;
}

ਸਮਝਾਓ (ExplanaƟon in Punjabi):

ਉਪਰੋਕਤ example ਿਵੱਚ Student class ਦੇ ਿਤੰਨ constructors ਹਨ:

1. Default Constructor – ਕਈੋ ਵੀ argument ਨਹ� ਲ�ਦਾ।

2. Single Parameter Constructor – ਿਸਰਫ id ਲ�ਦਾ ਹ।ੈ

3. Two Parameter Constructor – id ਅਤ ੇname ਦਵੋ� ਲ�ਦਾ ਹ।ੈ

C++ ਦਾ compiler ਇਹ constructors ਨੰੂ ਉਨ� � ਦ ੇparameters ਦੀ ਿਗਣਤੀ ਅਤ ੇtype ਦ ੇਆਧਾਰ ਤ ੇਪਛਾਣਦਾ ਹ।ੈ ਇਹ

feature object iniƟalizaƟon ਨੰੂ ਆਸਾਨ ਅਤ ੇflexible ਬਣਾ�ਦਾ ਹ।ੈ

Q. What is a Copy Constructor and when is it called? (Nov 22)
Ans. A copy constructor is a special constructor in C++ used to create a new object as a copy of an
exisƟng object. It has the following general syntax:
ClassName(const ClassName &old_object);
It takes a reference to an object of the same class as an argument. The main purpose of a copy
constructor is to perform a deep or customized copy of object data, especially when the class contains
pointers or dynamically allocated memory.

When is a Copy Constructor Called?
A copy constructor is called in the following scenarios:

1. When an object is iniƟalized using another object:
ClassName obj2 = obj1;

2. When an object is passed by value to a funcƟon.
3. When a funcƟon returns an object by value.
4. When an object is explicitly copied.

ClassName obj2(obj1);

Example:
class Demo {
public:
 int x;

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 23

 Demo(int val) { x = val; }
 Demo(const Demo &d) { x = d.x; } // Copy constructor
};
If you don’t define a copy constructor, C++ provides a default shallow copy. However, for classes
managing resources like files or dynamic memory, a user-defined copy constructor is necessary to avoid
memory issues.
Copy Constructor in C++ (ਕਾਪੀ ਕਨਸਟ�ਕਟਰ)

C++ ਿਵੱਚ Copy Constructor ਇੱਕ ਿਵ©ੇ© constructor ਹੁੰ ਦਾ ਹ ੈਜੋ ਿਕਸ ੇਮੌਜੂਦਾ object ਦੀ ਨਕਲ ਕਰਕ ੇਨਵ� object

ਬਣਾਉਣ ਲਈ ਵਰਿਤਆ ਜ�ਦਾ ਹ।ੈ ਇਸ ਦੀ ਆਮ syntax ਇਹ ਹ:ੈ

ClassName(const ClassName &old_object);
ਇਹ constructor ਇੱਕ reference ਲ�ਦਾ ਹ ੈਉਸ ੇਹੀ class ਦੇ object ਦਾ। ਇਸ ਦਾ ਮੁੱ ਖ ਉਦ©ੇ dynamically allocated

memory ਜ� pointers ਵਾਲੇ objects ਦੀ deep copy ਕਰਨਾ ਹੁੰ ਦਾ ਹ।ੈ

Copy Constructor ਕਦ� Call ਹੰੁਦਾ ਹੈ?

Copy constructor ਹੇਠ ਿਲਖੀਆਂ ਸਿਥਤੀਆ ਂਿਵੱਚ call ਹੁੰ ਦਾ ਹ:ੈ

1. Object IniƟalizaƟon ਨਾਲ:

ClassName obj2 = obj1;
2. Object ਨੰੂ FuncƟon ਨੰੂ pass ਕਰਨ ਸਮ� (by value)

3. FuncƟon ਤ� Object return ਕਰਨ ਸਮ� (by value)

4. Explicit Copy ਕਰਦ ੇਹੋਏ:

ClassName obj2(obj1);

ਉਦਾਹਰਨ (Example):

class Demo {
public:
 int x;

 Demo(int val) { x = val; } // Parameterized constructor

 Demo(const Demo &d) { // Copy constructor
 x = d.x;
 }
};

©ੈਲੋ ਕਾਪੀ (Shallow Copy) vs ਡੀਪ ਕਾਪੀ (Deep Copy):

ਜੇ ਤੁਸ� Copy Constructor define ਨਹ� ਕਰਦ,ੇ ਤ� C++ ਇੱਕ default shallow copy ਬਣਾ ਿਦੰਦਾ ਹ।ੈ ਪਰ ਜਦ� ਤੁਸ�

dynamically allocated memory ਜ� pointers ਵਰਤ ਰਹ ੇਹ,ੋ ਤ� ਇੱਕ user-defined copy constructor ਲਾਜ਼ਮੀ ਹੁੰ ਦਾ

ਹ ੈਨਹ� ਤ� memory leak ਜ� undefined behavior ਹ ੋਸਕਦਾ ਹ।ੈ

ਸਾਰ: Copy constructor object ਦੀ safe ਅਤ ੇcustomized ਨਕਲ ਬਣਾਉਣ ਲਈ ਵਰਿਤਆ ਜ�ਦਾ ਹ,ੈ ਖਾਸ ਕਰਕ ੇਜਦ�

object ਿਵਚ heap memory ਜ� pointers ਹੁੰ ਦੇ ਹਨ।

Q. Explain the following: (Nov 20)
a) Polymorphism in C++ (Nov 20)
b) Classes in C++

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 24

c) Data AbstracƟon in C++
d) Inheritance in C++
Ans. a) Polymorphism in C++: Polymorphism means “many forms” and allows the same funcƟon name
or operator to behave differently based on context. In C++, it is mainly of two types:

 Compile-Ɵme polymorphism (funcƟon/operator overloading)
 Run-Ɵme polymorphism (using virtual funcƟons and inheritance)

For example, a funcƟon named display() can show different outputs based on the parameters
passed.

b) Classes in C++: A class is a user-defined data type that serves as a blueprint for creaƟng objects. It
encapsulates data (variables) and funcƟons (methods) into a single unit. Example:
class Student {
 public:
 int roll;
 void show() { cout << roll; }
};

c) Data AbstracƟon in C++: AbstracƟon means showing only essenƟal features and hiding the internal
details. In C++, abstracƟon is achieved using classes and access specifiers (private, public, protected). It
helps in building secure and clean code by exposing only necessary parts of an object.

d) Inheritance in C++: Inheritance allows one class (child/derived) to acquire the properƟes and
behavior of another class (parent/base). This promotes code reusability and supports the concept of
hierarchical classificaƟon.
Example:
class Car : public Vehicle { };
a) C++ ਿਵੱਚ Polymorphism (ਪੋਿਲਮਾਰਿਫ਼ਜ਼ਮ): Polymorphism ਦਾ ਅਰਥ ਹੁੰ ਦਾ ਹ ੈ"ਕਈ ਰੂਪ"। ਇਹ ਇੱਕ ੋਹੀ funcƟon

ਜ� operator ਨੰੂ ਵੱਖ-ਵੱਖ context ਿਵੱਚ ਵੱਖ-ਵੱਖ ਢੰਗ ਨਾਲ ਵਰਤਣ ਦੀ ਆਿਗਆ ਿਦੰਦਾ ਹ।ੈ
C++ ਿਵੱਚ ਇਹ ਦੋ ਪ�ਕਾਰ� ਦ ੇਹੁੰ ਦ ੇਹਨ:

1. Compile-Ɵme Polymorphism – FuncƟon ਅਤ ੇOperator Overloading ਰਾਹ�।

2. Run-Ɵme Polymorphism – Virtual FuncƟons ਅਤ ੇInheritance ਰਾਹ�।

ਉਦਾਹਰਨ: ਇੱਕ display() funcƟon ਵੱਖ-ਵੱਖ arguments ਦੇ ਆਧਾਰ 'ਤੇ ਵੱਖ-ਵੱਖ output ਦੇ ਸਕਦਾ ਹ।ੈ

b) C++ ਿਵੱਚ Classes (ਕਲਾਸ): Class ਇੱਕ user-defined data type ਹੁੰ ਦੀ ਹ ੈਜੋ object ਬਣਾਉਣ ਲਈ blueprint ਵਜ�

ਕੰਮ ਕਰਦੀ ਹ।ੈ ਇਹ data (variables) ਅਤ ੇfuncƟons (methods) ਨੰੂ ਇੱਕ ਇਕਾਈ ਿਵੱਚ ਬੰਨ� ਦੀ ਹ।ੈ

ਉਦਾਹਰਨ:

class Student {
 public:
 int roll;
 void show() { cout << roll; }
};

c) C++ ਿਵੱਚ Data AbstracƟon (ਡਾਟਾ ਐਬਸਟਰੈਕ©ਨ): AbstracƟon ਦਾ ਅਰਥ ਹ ੈਿਕ ਿਸਰਫ਼ ਜ਼ਰੂਰੀ ਜਾਣਕਾਰੀ ਿਦਖਾਈ

ਜਾਵੇ ਅਤ ੇਅੰਦਰੂਨੀ ਜਿਟਲਤਾ ਨੰੂ ਲੁਕਾਇਆ ਜਾਵੇ।

C++ ਿਵੱਚ abstracƟon ਨੰੂ achieve ਕਰਨ ਲਈ classes ਅਤ ੇaccess specifiers (private, public, protected) ਵਰਤ ੇ

ਜ�ਦੇ ਹਨ। ਇਹ code ਨੰੂ ਸੁਰੱਿਖਅਤ ਅਤ ੇਸਾਫ਼ ਬਣਾ�ਦਾ ਹ।ੈ

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 25

d) C++ ਿਵੱਚ Inheritance (ਇਨਹੈਿਰਟ�ਸ): Inheritance ਰਾਹ� ਇੱਕ class (derived/child) ਦਜੂ ੇclass (base/parent)

ਦੀਆ ਂproperƟes ਅਤ ੇfuncƟons ਨੰੂ ਅਪਣਾ�ਦੀ ਹ।ੈ

ਇਸ ਨਾਲ code reuse ਹੁੰ ਦੀ ਹ ੈਅਤ ੇਇੱਕ ਹਾਇਰਾਰਕੀ ਿਸਸਟਮ ਬਣਾਉਣ ਿਵੱਚ ਮਦਦ ਿਮਲਦੀ ਹ।ੈ

ਉਦਾਹਰਨ:

class Car : public Vehicle { };

Q. Define Classes and Objects. Explain the different method to accessing members of class using an
example. (Nov 20)
Ans. A class is a user-defined data type in C++ that serves as a blueprint for creaƟng objects. It groups
related data members (variables) and member funcƟons (methods) into a single unit.
An object is an instance of a class. It is created to use the properƟes and behavior defined by the class.
MulƟple objects can be created from a single class, each having its own copy of data members.

Example:
#include <iostream>
using namespace std;

class Student {
public:
 int roll;
 string name;

 void display() {
 cout << "Roll No: " << roll << ", Name: " << name << endl;
 }
};

int main() {
 Student s1; // creaƟng object

 // Accessing class members
 s1.roll = 101;
 s1.name = "Rahul";
 s1.display(); // accessing funcƟon

 return 0;
}

Ways to Access Members of a Class:

1. Using dot operator (.) for normal objects (as shown above).
2. Using pointer to object with arrow operator (->):

Student *ptr = &s1;
ptr->display();

These methods allow controlled access to class members and support OOP principles like encapsulaƟon
and abstracƟon.
C++ ਿਵੱਚ Class ਤ ੇObject ਕੀ ਹੰੁਦੇ ਹਨ?

Class C++ ਿਵੱਚ ਇੱਕ user-defined data type ਹੁੰ ਦੀ ਹ ੈਜੋ objects ਬਣਾਉਣ ਲਈ ਇੱਕ blueprint ਵਜ� ਕੰਮ ਕਰਦੀ ਹ।ੈ

ਇਹ ਿਵੱਚ related data members (variables) ਅਤ ੇmember funcƟons (methods) ਇਕੱਠĂ ਕੀਤੇ ਜ�ਦ ੇਹਨ।

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 26

Object ਇੱਕ class ਦਾ instance ਹੁੰ ਦਾ ਹ।ੈ Object class ਿਵੱਚ define ਕੀਤੀਆ ਂproperƟes ਅਤ ੇbehaviors (ਫੰਕ©ਨ) ਨੰੂ

ਵਰਤਣ ਲਈ ਬਣਾਇਆ ਜ�ਦਾ ਹ।ੈ ਇੱਕ ੋclass ਤ� ਕਈ objects ਬਣਾਏ ਜਾ ਸਕਦ ੇਹਨ ਅਤ ੇਹਰ object ਦੀ ਆਪਣੀ अलग

copy ਹੁੰ ਦੀ ਹ।ੈ

ਉਦਾਹਰਨ:

#include <iostream>
using namespace std;

class Student {
public:
 int roll;
 string name;

 void display() {
 cout << "Roll No: " << roll << ", Name: " << name << endl;
 }
};

int main() {
 Student s1; // object ਬਣਾਇਆ

 // Class ਦ ੇmembers ਨੰੂ access ਕਰਨਾ
 s1.roll = 101;
 s1.name = "Rahul";
 s1.display(); // funcƟon call

 return 0;
}

Class Members ਨੰੂ Access ਕਰਨ ਦ ੇਤਰੀਕ:ੇ

1. Dot Operator (.) – ਸਧਾਰਣ object ਰਾਹ� access:

s1.display();
2. Pointer ਰਾਹ� Arrow Operator (->) – ਜਦ� ਤੁਸ� object ਦਾ pointer ਬਣਾਉ:

Student *ptr = &s1;
ptr->display();

ਇਹ ਤਰੀਕ ੇC++ ਿਵੱਚ EncapsulaƟon ਅਤ ੇAbstracƟon ਵਰਗੀਆ ਂOOP concepts ਨੰੂ follow ਕਰਦ ੇਹਨ, ਜੋ code ਨੰੂ

structure ਅਤ ੇsecurity ਿਦੰਦ ੇਹਨ।

ਜੇ ਤੁਸ� ਹੋਰ OOP concepts ਦੀ ਵੀ ਪੰਜਾਬੀ ਿਵੱਚ ਿਵਆਿਖਆ ਚਾਹੁੰ ਦ ੇਹ ੋਤ� ਦੱਸ,ੋ ਮ� ਨĄ ਟਸ ਿਤਆਰ ਕਰ ਿਦਆਂ।

Q. Write a program to overload ++ and -- operator to increase and decrease the value of class data
members. (Nov 24)
Ans. Operator overloading in C++ allows you to redefine the meaning of operators for user-defined types
(like classes). Below is an example that demonstrates overloading of the ++ and -- operators to modify a
class data member.

 ࿨࿩࿪ Code:
#include <iostream>

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 27

using namespace std;

class Counter {
private:
 int value;

public:
 Counter() { value = 0; }

 // Overloading ++ (prefix)
 void operator++() {
 ++value;
 }

 // Overloading -- (prefix)
 void operator--() {
 --value;
 }

 void display() {
 cout << "Value: " << value << endl;
 }
};

int main() {
 Counter c;

 cout << "IniƟal ";
 c.display();

 ++c; // calls operator++
 cout << "AŌer ++ ";
 c.display();

 --c; // calls operator--
 cout << "AŌer -- ";
 c.display();

 return 0;
}

 ࿨࿩࿪ ExplanaƟon:

 operator++() is used to increment the value.
 operator--() is used to decrement the value.
 These are prefix forms; you can also define posƞix versions by using a dummy int parameter.
 This demonstrates encapsulaƟon and operator overloading concepts in C++.

 ࿨࿩࿪ C++ ਿਵੱਚ Operator Overloading (ਓਪਰੇਟਰ ਓਵਰਲੋਿਡੰਗ)

C++ ਿਵੱਚ operator overloading ਦਾ ਮਤਲੱਬ ਹ ੈਿਕ ਤੁਸ� ਿਕਸ ੇuser-defined type (ਿਜਵ� ਿਕ class) ਲਈ operators

ਦੀ ਿਵਵਹਾਰਤਾ ਨੰੂ ਦੁਬਾਰਾนิਭਾ ਸਕਦੇ ਹ।ੋ

ਹੇਠ� ਿਦੱਤਾ ਉਦਾਹਰਨ ++ ਅਤ ੇ-- ਓਪਰੇਟਰ ਨੰੂ overload ਕਰਕ ੇclass ਦੇ member variable ਨੰੂ ਵਧਾਉਣ ਜ� ਘਟਾਉਣ ਦਾ

ਤਰੀਕਾ ਿਦਖਾ�ਦਾ ਹ।ੈ

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 28

 ࿨࿩࿪ ਕੋਡ:

#include <iostream>
using namespace std;

class Counter {
private:
 int value;

public:
 Counter() { value = 0; }

 // ++ ਓਪਰੇਟਰ ਦੀ overloading (prefix)

 void operator++() {
 ++value;
 }

 // -- ਓਪਰੇਟਰ ਦੀ overloading (prefix)

 void operator--() {
 --value;
 }

 void display() {
 cout << "Value: " << value << endl;
 }
};

int main() {
 Counter c;

 cout << "IniƟal ";
 c.display();

 ++c; // operator++() call ਹੁੰ ਦੀ ਹ ੈ

 cout << "AŌer ++ ";
 c.display();

 --c; // operator--() call ਹੁੰ ਦੀ ਹ ੈ

 cout << "AŌer -- ";
 c.display();

 return 0;
}

 ࿨࿩࿪ ਿਵਆਿਖਆ (ExplanaƟon in Punjabi):

 operator++() funcƟon value ਨੰੂ 1 ਵਧਾ�ਦਾ ਹ।ੈ

 operator--() funcƟon value ਨੰੂ 1 ਘਟਾ�ਦਾ ਹ।ੈ

 ਇਹ ਦਵੋ� prefix form ਹਨ (ਿਜਵ� ++x, --x)।

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 29

 ਜੇ ਤੁਸ� posƞix form (x++, x--) ਬਣਾਉਣਾ ਚਾਹੁੰ ਦ ੇਹ ੋਤ� ਤੁਸ� funcƟon ਿਵੱਚ dummy int parameter ਵਰਤ

ਸਕਦ ੇਹ।ੋ

 ਇਹ ਕਡੋ C++ ਦ ੇEncapsulaƟon ਅਤ ੇOperator Overloading ਦ ੇconcepts ਨੰੂ ਦਰਸਾ�ਦਾ ਹੈ। ࠣࠪࠩࠨࠧࠦࠥࠤ

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 30

Unit 4: Inheritance and Polymorphism
Short Answer QuesƟons:

Q. What are public and private keywords? (Nov 20)
Ans. public members are accessible from anywhere in the program, while private members can only be
accessed within the class itself.
public ਮ�ਬਰ ਿਕਤੇ ਵੀ program ਿਵੱਚ ਐਕਸ{ੈਸ ਕੀਤੇ ਜਾ ਸਕਦ ੇਹਨ, ਜਦਿਕ private ਮ�ਬਰ ਿਸਰਫ਼ ਉਸੀ ਕਲਾਸ ਿਵੱਚ ਹੀ

ਐਕਸ{ੈਸ ਕੀਤ ੇਜਾ ਸਕਦ ੇਹਨ।

Q. DifferenƟate between private and protected class members. (Nov 20)
Ans. private members are accessible only within the class, while protected members are accessible
within the class and its derived classes.
private ਮ�ਬਰ ਿਸਰਫ਼ ਕਲਾਸ ਦੇ ਅੰਦਰ ਹੀ ਐਕਸ{ੈਸ ਕੀਤ ੇ ਜਾ ਸਕਦ ੇ ਹਨ,

ਜਦਿਕ protected ਮ�ਬਰ ਕਲਾਸ ਅਤ ੇਉਸ ਦੀਆ ਂderived classes ਿਵੱਚ ਐਕਸ{ੈਸ ਕੀਤ ੇਜਾ ਸਕਦੇ ਹਨ।

Q. Discuss any two disadvantages of MulƟple inheritance. (Nov 20)
Ans. MulƟple inheritance can cause ambiguity (e.g., diamond problem) and increases code complexity,
making maintenance harder.
Ambiguity (ਅਸਪ©ਟਤਾ) ਪੈਦਾ ਹ ੋਸਕਦੀ ਹ,ੈ ਿਜਵ� ਿਕ diamond problem। ਕੋਡ ਿਜ਼ਆਦਾ complex ਹ ੋਜ�ਦਾ ਹ,ੈ ਿਜਸ

ਨਾਲ maintenance ਮੁ©ਕਲ ਹ ੋਜ�ਦੀ ਹ।ੈ

Q. Virtual base class (Nov 24)
Ans. A virtual base class prevents mulƟple copies of a base class in a mulƟple inheritance hierarchy,
resolving ambiguity.
Virtual base class ਮਲਟੀਪਲ ਇਨਹਰੈੀਟ�ਸ ਿਵੱਚ base class ਦੀ duplicate copies ਬਣਨ ਤ� ਰੋਕਦੀ ਹ,ੈ ਿਜਸ ਨਾਲ

ambiguity ਨੰੂ ਦੂਰ ਕੀਤਾ ਜ�ਦਾ ਹ।ੈ

Q. What is an excepƟon in C++? (Nov 22)
Ans. An excepƟon is a runƟme error-handling mechanism that allows the program to catch and manage
unexpected errors using try, catch, and throw.
ExcepƟon ਇੱਕ runƟme error-handling mechanism ਹ ੈ ਜੋ try, catch ਅਤ ੇ throw keywords ਦੀ ਵਰਤ� ਕਰਕ ੇ

ਅਣਿਪੱਛਲੇ errors ਨੰੂ handle ਕਰਦਾ ਹ।ੈ

Q. How do you allocate and deallocate memory in C++? (Nov 22)
Ans. Use new to dynamically allocate memory and delete to free it when no longer needed.
new keyword ਨਾਲ dynamically memory allocate ਕੀਤੀ ਜ�ਦੀ ਹ ੈਅਤ ੇdelete ਨਾਲ ਉਹ memory ਖਾਲੀ ਕੀਤੀ

ਜ�ਦੀ ਹ ੈਜਦ� ਉਹ ਲੋੜ�ਦੀ ਨਾ ਰਹ।ੇ

Q. New (Nov 24)
ans. new is a dynamic memory operator in C++ used to allocate memory for variables or objects at
runƟme.
new ਇੱਕ dynamic memory operator ਹ ੈਜੋ runƟme ਤੇ variables ਜ� objects ਲਈ memory allocate ਕਰਨ ਲਈ

ਵਰਿਤਆ ਜ�ਦਾ ਹ।ੈ

Long Answer QuesƟons:
Q. What is runƟme polymorphism in C++? Write a program to illustrate it. (Nov 22)
Ans. RunƟme Polymorphism in C++ (in 200 Words):

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 31

RunƟme polymorphism in C++ is a form of polymorphism that occurs during program execuƟon. It is
achieved using inheritance and virtual funcƟons. This allows a base class pointer to call funcƟons from
derived class objects at runƟme, enabling dynamic method dispatch.
The primary requirement is to declare a funcƟon as virtual in the base class and override it in the derived
class. This allows C++ to decide at runƟme which funcƟon to invoke, based on the actual object type.

 ࿨࿩࿪ Program to Illustrate RunƟme Polymorphism:
#include <iostream>
using namespace std;

class Animal {
public:
 virtual void sound() {
 cout << "Animal makes a sound" << endl;
 }
};

class Dog : public Animal {
public:
 void sound() override {
 cout << "Dog barks" << endl;
 }
};

class Cat : public Animal {
public:
 void sound() override {
 cout << "Cat meows" << endl;
 }
};

int main() {
 Animal* a; // base class pointer
 Dog d;
 Cat c;

 a = &d;
 a->sound(); // Calls Dog's sound()

 a = &c;
 a->sound(); // Calls Cat's sound()

 return 0;
}

 ࿨࿩࿪ Output:
Dog barks
Cat meows
 ࿨࿩࿪ Conclusion:
RunƟme polymorphism enhances flexibility and reusability by allowing objects to behave differently
depending on their actual class at runƟme.
 ࿨࿩࿪ C++ ਿਵੱਚ RunƟme Polymorphism (200 ©ਬਦ� ਿਵੱਚ)

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 32

C++ ਿਵੱਚ RunƟme Polymorphism ਉਹ ਿਵਵਹਾਰ ਹ ੈਜੋ ਕੰਪਾਇਲ ਹੋਣ ਤ� ਬਾਅਦ, ਚਲਾਉਣ ਦ ੇਸਮ� (runƟme) ਤ ੇਤਅੈ

ਹੁੰ ਦਾ ਹ।ੈ ਇਹ ਇਨਹੈਿਰਟ�ਸ (Inheritance) ਅਤ ੇਵਰਚੁਅਲ ਫੰਕ©ਨ� (Virtual FuncƟons) ਰਾਹ� ਹਾਸਲ ਕੀਤਾ ਜ�ਦਾ ਹ।ੈ

ਇਸਦੇ ਜ਼ਰੀਏ, ਇੱਕ base class ਦਾ pointer ਜ� reference, derived class ਦੀ object ਨੰੂ point ਕਰ ਸਕਦਾ ਹ ੈਅਤ ੇਉਸ

object ਦੀ funcƟon definiƟon ਨੰੂ runƟme 'ਤੇ ਚਲਾ�ਦਾ ਹ।ੈ

 ❥❦ ਜ਼ਰੂਰੀ ਗੱਲ:

 Base class ਿਵੱਚ funcƟon ਨੰੂ virtual ਘੋਿ©ਤ ਕੀਤਾ ਜ�ਦਾ ਹ।ੈ

 Derived class ਿਵੱਚ ਉਸ funcƟon ਨੰੂ override ਕੀਤਾ ਜ�ਦਾ ਹ।ੈ

 ਇਹ mechanism dynamic dispatch ਕਹੀ ਜ�ਦੀ ਹ।ੈ

 ࿨࿩࿪ ਉਦਾਹਰਨ – RunƟme Polymorphism ਦਾ ਕਡੋ:

#include <iostream>
using namespace std;

class Animal {
public:
 virtual void sound() {
 cout << "Animal makes a sound" << endl;
 }
};

class Dog : public Animal {
public:
 void sound() override {
 cout << "Dog barks" << endl;
 }
};

class Cat : public Animal {
public:
 void sound() override {
 cout << "Cat meows" << endl;
 }
};

int main() {
 Animal* a; // base class pointer
 Dog d;
 Cat c;

 a = &d;
 a->sound(); // Dog ਦੀ sound() call ਹੁੰ ਦੀ ਹ ੈ

 a = &c;
 a->sound(); // Cat ਦੀ sound() call ਹੁੰ ਦੀ ਹ ੈ

 return 0;
}

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 33

 ࿨࿩࿪ ਆਉਟਪੁਟ (Output):

Dog barks
Cat meows

 ࿨࿩࿪ ਨਤੀਜਾ (Conclusion): RunƟme polymorphism C++ ਿਵੱਚ ਇੱਕ ©ਕਤੀ©ਾਲੀ ਿਵ©ੇ©ਤਾ ਹ ੈ ਜੋ code ਨੰੂ

ਫਲੈਕਸੀਬਲ, reuseable ਅਤ ੇਵਧੀਕ ਮਾਿਡਊਲਰ ਬਣਾ�ਦੀ ਹ।ੈ ਇਹ allow ਕਰਦੀ ਹ ੈਿਕ objects ਆਪਣੇ ਅਸਲ type

ਅਨੁਸਾਰ runƟme 'ਤੇ ਅਲੱਗ ਿਵਵਹਾਰ ਕਰ ਸਕਣ।

Q. What are the various types of access specifiers used in C++? (Nov 24)
Ans. Access specifiers in C++ are keywords used to set the accessibility or visibility of class members
(variables and funcƟons). They help implement encapsulaƟon by controlling how class members are
accessed from outside the class. There are three main access specifiers in C++:

1. Public:

 Members declared as public are accessible from anywhere in the program using the object of
the class.

 Used when funcƟons or variables need to be accessed freely.
Example:
class Demo {
public:
 int x; // accessible from outside
};

2. Private:

 Members declared as private can only be accessed within the class itself.
 They are not accessible directly from outside the class.
 Used to protect sensiƟve data.

Example:
class Demo {
private:
 int x; // not accessible directly outside the class
};

3. Protected:

 Members are accessible within the class and in derived (child) classes.
 Not accessible directly from outside the class or from unrelated classes.

Example:
class Base {
protected:
 int x; // accessible in derived class
};

Access specifiers are crucial for building secure and modular object-oriented applicaƟons in C++.
C++ ਿਵੱਚ Access Specifiers ਕੀ ਹੰੁਦ ੇਹਨ?

Access specifiers C++ ਿਵੱਚ ਕੁੰ ਜੀ-©ਬਦ (keywords) ਹੁੰ ਦ ੇਹਨ ਜੋ class ਦ ੇਮ�ਬਰ� (variables ਅਤ ੇ funcƟons) ਦੀ

ਪਹੰੁਚ (accessibility) ਜ� ਿਦੱਖ (visibility) ਨੰੂ ਿਨਰਧਾਰਤ ਕਰਦੇ ਹਨ। ਇਹ encapsulaƟon ਲਾਗ ੂਕਰਨ ਿਵੱਚ ਮਦਦ ਕਰਦ ੇ

ਹਨ ਿਜਸ ਨਾਲ ਬਾਹਰਲੇ ਕਡੋ ਨੰੂ ਿਕਵ� ਅਤ ੇਿਕੱਥ� class ਦੇ ਮ�ਬਰ� ਤੱਕ ਪਹੁੰ ਚ ਿਮਲੇ, ਇਹ ਕੰਟਰਲੋ ਹੁੰ ਦਾ ਹ।ੈ

C++ ਿਵੱਚ ਿਤੰਨ ਪ�ਮੁੱ ਖ access specifiers ਹੁੰ ਦ ੇਹਨ:

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 34

1. Public:
 Public ਮ�ਬਰ� ਤੱਕ class ਦੀ ਿਕਸ ੇਵੀ object ਰਾਹ� ਿਕਤ ੇਵੀ ਪਹੁੰ ਚ ਹ ੋਸਕਦੀ ਹ।ੈ
 ਜਦ� ਤੁਹਾਨੰੂ funcƟons ਜ� variables ਨੰੂ ਮੁਫ਼ਤ ਤੌਰ ਤ ੇਿਕਤ ੇਵੀ access ਕਰਵਾਉਣਾ ਹੋਵ,ੇ ਤਦ ਇਹ ਵਰਿਤਆ ਜ�ਦਾ

ਹ।ੈ

ਉਦਾਹਰਨ:

class Demo {
public:
 int x; // ਬਾਹਰ� ਿਸੱਧਾ access ਕੀਤਾ ਜਾ ਸਕਦਾ ਹ ੈ

};

2. Private:
 Private ਮ�ਬਰ ਿਸਰਫ਼ ਉਸੀ class ਦ ੇਅੰਦਰ� ਹੀ access ਹ ੋਸਕਦ ੇਹਨ।

 ਬਾਹਰਲੇ ਕਡੋ ਤ� ਇਹ ਿਸੱਧਾ access ਨਹ� ਕੀਤੇ ਜਾ ਸਕਦੇ।

 ਇਹ ਸੰਵੇਦਨ©ੀਲ (sensiƟve) ਡਾਟਾ ਦੀ ਰੱਿਖਆ ਲਈ ਵਰਿਤਆ ਜ�ਦਾ ਹ।ੈ
ਉਦਾਹਰਨ:

class Demo {
private:
 int x; // ਬਾਹਰ� ਿਸੱਧਾ access ਨਹ� ਕੀਤਾ ਜਾ ਸਕਦਾ
};

3. Protected:

 Protected ਮ�ਬਰ class ਦ ੇਅੰਦਰ ਅਤ ੇderived (ਬੱਚੇ) classes ਿਵੱਚ access ਹ ੋਸਕਦ ੇਹਨ।

 ਬਾਹਰਲੇ ਕਈੋ ਵੀ unrelated ਕੋਡ ਇਸ ਤਰ�� ਦੀ access ਨਹ� ਕਰ ਸਕਦਾ।
ਉਦਾਹਰਨ:

cpp
CopyEdit
class Base {
protected:
 int x; // derived class ਿਵੱਚ access ਕੀਤਾ ਜਾ ਸਕਦਾ ਹ ੈ

};

ਨਤੀਜਾ:

Access specifiers C++ ਿਵੱਚ ਸੁਰੱਿਖਅਤ ਅਤ ੇਮਾਿਡਊਲਰ object-oriented applicaƟons ਬਣਾਉਣ ਲਈ ਬਹੁਤ ਜ਼ਰੂਰੀ

ਹਨ। ਇਹ encapsulaƟon ਅਤ ੇdata hiding ਨੰੂ ਮਜ਼ਬੂਤ ਕਰਦੇ ਹਨ।

Q. Explain various types of inheritance that we can perform in C++. Give examples. (Nov 24)
Ans. Inheritance allows a new class (derived class) to acquire properƟes and behaviors of an exisƟng
class (base class), promoƟng code reuse. C++ supports several types of inheritance:

1. Single Inheritance: One derived class inherits from one base class.

Example:
class Animal {
public:
 void eat() { cout << "EaƟng\n"; }
};

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 35

class Dog : public Animal {
public:
 void bark() { cout << "Barking\n"; }
};

2. MulƟple Inheritance: A derived class inherits from more than one base class.

Example:
class Printer {
public:
 void print() { cout << "PrinƟng\n"; }
};

class Scanner {
public:
 void scan() { cout << "Scanning\n"; }
};

class Copier : public Printer, public Scanner { };

3. MulƟlevel Inheritance: A derived class inherits from another derived class, forming a chain.

Example:
class Animal {
public:
 void eat() { cout << "EaƟng\n"; }
};

class Dog : public Animal {
public:
 void bark() { cout << "Barking\n"; }
};

class Puppy : public Dog {
public:
 void weep() { cout << "Weeping\n"; }
};

4. Hierarchical Inheritance: MulƟple derived classes inherit from a single base class.

Example:
class Animal { };
class Dog : public Animal { };
class Cat : public Animal { };

5. Hybrid Inheritance: CombinaƟon of two or more types of inheritance.

Inheritance supports beƩer code organizaƟon and reusability in C++.
ਿਵਰਾਸਤ (Inheritance) ਕੀ ਹੈ?

Inheritance ਇੱਕ ਨਵ� class (derived class) ਨੰੂ ਮੌਜੂਦਾ class (base class) ਦੀਆ ਂਖਾਸੀਅਤ� ਅਤ ੇਕਰਤੱਬ� ਨੰੂ ਹਾਸਲ

ਕਰਨ ਦੀ ਸਹਲੂਤ ਿਦੰਦਾ ਹ,ੈ ਿਜਸ ਨਾਲ ਕਡੋ ਦੁਹਰਾਅ ਘਟਦਾ ਹ ੈਅਤ ੇਵਰਤ� ਵਧਦੀ ਹ।ੈ C++ ਿਵੱਚ ਵੱਖ-ਵੱਖ ਿਕਸਮ� ਦੀ

inheritance ਨੰੂ ਸਹਾਰਾ ਿਮਲਦਾ ਹ:ੈ

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 36

1. Single Inheritance (ਿਸੰਗਲ ਿਵਰਾਸਤ): ਇੱਕ derived class ਇੱਕ base class ਤ� ਿਵਰਾਸਤ ਲ�ਦੀ ਹ।ੈ
ਉਦਾਹਰਨ:

class Animal {
public:
 void eat() { cout << "EaƟng\n"; }
};

class Dog : public Animal {
public:
 void bark() { cout << "Barking\n"; }
};

2. MulƟple Inheritance (ਬਹੁ-ਿਵਰਾਸਤ): ਇੱਕ derived class ਇੱਕ ਤ� ਵੱਧ base classes ਤ� ਿਵਰਾਸਤ ਲ�ਦੀ ਹ।ੈ

ਉਦਾਹਰਨ:

class Printer {
public:
 void print() { cout << "PrinƟng\n"; }
};

class Scanner {
public:
 void scan() { cout << "Scanning\n"; }
};

class Copier : public Printer, public Scanner { };

3. MulƟlevel Inheritance (ਬਹੁ-ਸਤਹੀ ਿਵਰਾਸਤ): ਇੱਕ derived class, ਹੋਰ derived class ਤ� ਿਵਰਾਸਤ ਲ�ਦੀ ਹ,ੈ ਿਜਸ

ਨਾਲ ਕੜੀ ਬਣਦੀ ਹ।ੈ
ਉਦਾਹਰਨ:

class Animal {
public:
 void eat() { cout << "EaƟng\n"; }
};

class Dog : public Animal {
public:
 void bark() { cout << "Barking\n"; }
};

class Puppy : public Dog {
public:
 void weep() { cout << "Weeping\n"; }
};

4. Hierarchical Inheritance (ਹਾਇਰਾਰਕੀਕਲ ਿਵਰਾਸਤ): ਕਈ derived classes ਇੱਕ ਹੀ base class ਤ� ਿਵਰਾਸਤ

ਲ�ਦੀਆ ਂਹਨ।
ਉਦਾਹਰਨ:

class Animal { };
class Dog : public Animal { };

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 37

class Cat : public Animal { };

5. Hybrid Inheritance (ਿਮਲੀ ਜੁਲੀ ਿਵਰਾਸਤ):

ਦੋ ਜ� ਵੱਧ inheritance ਦੇ ਤਰੀਿਕਆਂ ਦਾ ਿਮਲਾਪ।

ਨਤੀਜਾ:

Inheritance C++ ਿਵੱਚ ਕੋਡ ਨੰੂ ਵਧੀਆ ਢੰਗ ਨਾਲ ਆਯੋਿਜਤ ਅਤ ੇਦੁਹਰਾਅ ਯੋਗ ਬਣਾਉਣ ਿਵੱਚ ਮਦਦ ਕਰਦਾ ਹ।ੈ

Q. How can you convert an integer to string in C++? Write a program. (Nov 22)
Ans. In C++, an integer can be converted to a string in mulƟple ways. The most common and simplest
method is to use the to_string() funcƟon provided by the C++ Standard Library (<string> header). This
funcƟon takes an integer (or other numeric types) and returns its string representaƟon.

Example Program:
#include <iostream>
#include <string> // Required for std::to_string

using namespace std;

int main() {
 int num = 12345;

 // Convert integer to string using to_string()
 string str = to_string(num);

 cout << "Integer: " << num << endl;
 cout << "String: " << str << endl;

 return 0;
}

ExplanaƟon:

 The to_string() funcƟon converts the integer num into a string str.
 This string can then be used like any other string object for operaƟons such as concatenaƟon,

output, or manipulaƟon.
 Before C++11, programmers oŌen used stringstream from <sstream> for conversion, but

to_string() is simpler and more efficient.

Output:
Integer: 12345
String: 12345
This method ensures clean and efficient conversion of integers to strings in modern C++.
C++ ਿਵੱਚ ਇੰਟੀਜਰ ਨੰੂ ਸਟਿਰੰਗ ਿਵੱਚ ਿਕਵ� ਬਦਿਲਆ ਜਾ ਸਕਦਾ ਹੈ?

C++ ਿਵੱਚ ਇੱਕ ਇੰਟੀਜਰ ਨੰੂ ਸਟਿਰੰਗ ਿਵੱਚ ਕਈ ਤਰੀਿਕਆ ਂਨਾਲ ਬਦਿਲਆ ਜਾ ਸਕਦਾ ਹ।ੈ ਸਭ ਤ� ਆਮ ਅਤ ੇਆਸਾਨ ਤਰੀਕਾ

ਹ ੈ to_string() ਫੰਕ©ਨ ਦੀ ਵਰਤ� ਕਰਨੀ, ਜੋ C++ Standard Library (<string> ਹੇਡਰ) ਿਵੱਚ ਿਮਲਦਾ ਹ।ੈ ਇਹ ਫੰਕ©ਨ

ਿਕਸ ੇਇੰਟੀਜਰ ਜ� ਹੋਰ ਨੰਬਿਰਕ ਿਕਸਮ ਨੰੂ ਲ�ਦਾ ਹ ੈਅਤ ੇਉਸਦੀ ਸਟਿਰੰਗ ਰੂਪ ਿਵੱਚ ਵਾਪਸ ਕਰਦਾ ਹ।ੈ

ਉਦਾਹਰਨ ਦਾ ਕੋਡ:

#include <iostream>

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 38

#include <string> // std::to_string ਲਈ ਲੋੜ�ਦਾ

using namespace std;

int main() {
 int num = 12345;

 // to_string() ਦੀ ਵਰਤ� ਕਰਕ ੇਇੰਟੀਜਰ ਨੰੂ ਸਟਿਰੰਗ ਿਵੱਚ ਬਦਲੋ

 string str = to_string(num);

 cout << "Integer: " << num << endl;
 cout << "String: " << str << endl;

 return 0;
}

ਿਵਆਿਖਆ:

 to_string() ਫੰਕ©ਨ ਇੰਟੀਜਰ num ਨੰੂ ਸਟਿਰੰਗ str ਿਵੱਚ ਬਦਲ ਿਦੰਦਾ ਹ।ੈ
 ਇਹ ਸਟਿਰੰਗ ਿਫਰ ਿਕਸ ੇਵੀ ਸਧਾਰਣ ਸਟਿਰੰਗ ਵ�ਗ ਵਰਤੀ ਜਾ ਸਕਦੀ ਹ,ੈ ਿਜਵ� ਿਕ ਕਨਕੈਟਨੇĂ ©ਨ, ਿਪ�ੰ ਿਟੰਗ ਜ� ਹੋਰ

ਮੈਿਨਪੂਲੇ©ਨ।
 C++11 ਤ� ਪਿਹਲ�, ਇਹ ਕੰਮ stringstream ਦੀ ਵਰਤ� ਕਰਕ ੇਕੀਤਾ ਜ�ਦਾ ਸੀ, ਪਰ to_string() ਵਰਤ� ਿਵੱਚ ਆਸਾਨ

ਅਤ ੇਤੇਜ਼ ਹ।ੈ

ਆਉਟਪੁੱ ਟ:

Integer: 12345
String: 12345

ਇਹ ਤਰੀਕਾ ਆਧਿੁਨਕ C++ ਿਵੱਚ ਇੰਟੀਜਰ ਤ� ਸਟਿਰੰਗ ਤਬਦੀਲੀ ਲਈ ਸਤੰੁਤਰ ਅਤ ੇਪ�ਭਾਵ©ਾਲੀ ਹ।ੈ

Q. What is ExcepƟon Handling? Does C++ support ExcepƟon Handling? Comment on C++ standard
excepƟons. (Nov 22)
Ans. ExcepƟon handling is a mechanism to handle runƟme errors or unusual condiƟons in a controlled
way, allowing a program to conƟnue or terminate gracefully without crashing. It separates error-
handling code from regular code, improving clarity and robustness.
In C++, excepƟon handling is fully supported using three keywords:

 try — defines a block of code to monitor for excepƟons.
 throw — raises an excepƟon.
 catch — handles the excepƟon thrown.

How It Works:
When an excepƟon occurs inside the try block, control is transferred to the matching catch block that
handles the excepƟon. If no matching catch block is found, the program terminates.

C++ Standard ExcepƟons:
C++ provides a standard excepƟon hierarchy in the <excepƟon> header, with std::excepƟon as the base
class. Common standard excepƟons include:

 std::runƟme_error — errors detected during runƟme.
 std::logic_error — errors in the program logic.
 std::out_of_range — accessing invalid array or container indices.

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 39

 std::invalid_argument — invalid funcƟon arguments.
 std::bad_alloc — memory allocaƟon failure.

These standard excepƟons help developers catch and handle common error scenarios efficiently,
promoƟng beƩer error management.

In summary, C++ supports structured excepƟon handling that improves program reliability by managing
errors without abrupt terminaƟon.
ਐਕਸਪ©ਨ ਹ�ਡਿਲੰਗ ਕੀ ਹੈ?

ਐਕਸਪ©ਨ ਹ�ਡਿਲੰਗ ਇੱਕ ਤਰੀਕਾ ਹ ੈਿਜਸ ਨਾਲ ਰਨਟਾਈਮ ਦਰੌਾਨ ਹਣੋ ਵਾਲੀਆ ਂਗਲਤੀਆ ਂਜ� ਅਸਧਾਰਣ ਸਿਥਤੀਆ ਂਨੰੂ

ਕੰਟਰਲੋਡ ਢੰਗ ਨਾਲ ਸੰਭਾਿਲਆ ਜਾ ਸਕਦਾ ਹ।ੈ ਇਸ ਤਰੀਕ ੇਨਾਲ ਪ�ੋਗਰਾਮ ਨੰੂ ਿਬਨ� ਕਰ©ੈ ਹੋਏ ਜਾਰੀ ਰੱਖਣਾ ਜ� ਸਚੱੁਜੇ ਤਰੀਕ ੇ

ਨਾਲ ਬੰਦ ਕਰਨਾ ਮੁਮਿਕਨ ਹੁੰ ਦਾ ਹ।ੈ ਇਹ ਗਲਤੀ ਸੰਭਾਲਣ ਵਾਲੇ ਕੋਡ ਨੰੂ ਆਮ ਕਡੋ ਤ� ਵੱਖਰਾ ਕਰਕ ੇਕੋਡ ਦੀ ਸਪ©ਟਤਾ ਅਤ ੇ

ਮਜ਼ਬੂਤੀ ਵਧਾ�ਦਾ ਹ।ੈ

C++ ਿਵੱਚ ਐਕਸਪ©ਨ ਹ�ਡਿਲੰਗ

C++ ਿਵੱਚ ਐਕਸਪ©ਨ ਹ�ਡਿਲੰਗ ਿਤੰਨ ਮੁੱ ਖ ਕੀਵਰਡ� ਦੀ ਵਰਤ� ਨਾਲ ਕੀਤੀ ਜ�ਦੀ ਹ:ੈ

 try — ਉਹ ਕੋਡ ਬਲਾਕ ਜੋ ਐਕਸਪ©ਨ� ਲਈ ਮਾਨੀਟਰ ਕੀਤਾ ਜ�ਦਾ ਹ।ੈ

 throw — ਐਕਸਪ©ਨ ਨੰੂ �ਠਾ�ਦਾ ਹ।ੈ

 catch — �ਠਾਏ ਗਏ ਐਕਸਪ©ਨ ਨੰੂ ਹ�ਡਲ ਕਰਦਾ ਹ।ੈ

ਿਕਵ� ਕੰਮ ਕਰਦੀ ਹੈ?

ਜਦ� try ਬਲਾਕ ਿਵੱਚ ਕਈੋ ਐਕਸਪ©ਨ ਹੁੰ ਦੀ ਹ,ੈ ਤ� ਕੰਟਰਲੋ ਉਸ catch ਬਲਾਕ ਨੰੂ ਿਮਲਦਾ ਹ ੈਜੋ ਉਸ ਐਕਸਪ©ਨ ਨੰੂ ਹ�ਡਲ

ਕਰਦਾ ਹ।ੈ ਜੇ ਕਈੋ ਿਮਲਦਾ ਜੁਲਦਾ catch ਬਲਾਕ ਨਹ� ਿਮਲਦਾ, ਤ� ਪ�ੋਗਰਾਮ ਅਚਾਨਕ ਬੰਦ ਹ ੋਜ�ਦਾ ਹ।ੈ

C++ ਦ ੇਿਮਆਰੀ ਐਕਸਪ©ਨ

C++ ਨĂ <excepƟon> ਹੈਡਰ ਿਵੱਚ ਿਮਆਰੀ ਐਕਸਪ©ਨ� ਦੀ ਇੱਕ ਵੰਸ਼ਾਵਲੀ ਿਦੱਤੀ ਹ,ੈ ਿਜਸਦਾ ਬੇਸ ਕਲਾਸ std::excepƟon

ਹ।ੈ ਕੁਝ ਆਮ ਿਮਆਰੀ ਐਕਸਪ©ਨ ਹਨ:

 std::runƟme_error — ਰਨਟਾਈਮ ਦੌਰਾਨ ਪਾਈਆ ਂਗਈਆ ਂਗਲਤੀਆਂ।

 std::logic_error — ਪ�ੋਗਰਾਮ ਦੀ ਲਾਿਜਕ ਿਵੱਚ ਗਲਤੀਆਂ।

 std::out_of_range — ਗਲਤ ਅਰ ੇਜ� ਕਨਟਨੇਰ ਇੰਡੈਕਸ ਤੱਕ ਪਹੁੰ ਚ।

 std::invalid_argument — ਗਲਤ ਫੰਕ©ਨ ਆਰਗਯੂਮ�ਟ।

 std::bad_alloc — ਮੈਮੋਰੀ ਐਲੋਕ©ੇਨ ਫਲੇ�।
ਇਹ ਿਮਆਰੀ ਐਕਸਪ©ਨ ਿਡਵੈਲਪਰ� ਨੰੂ ਆਮ ਗਲਤੀਆਂ ਨੰੂ ਢੂੰ ਢਣ ਅਤ ੇਸੰਭਾਲਣ ਿਵੱਚ ਮਦਦ ਕਰਦ ੇਹਨ, ਿਜਸ ਨਾਲ ਿਬਹਤਰ

ਐਰਰ ਮੈਨĂ ਜਮ�ਟ ਹੁੰ ਦਾ ਹ।ੈ

ਨਤੀਜਾ:

C++ ਸੰਗਿਠਤ ਐਕਸਪ©ਨ ਹ�ਡਿਲੰਗ ਨੰੂ ਸਮਰਥਨ ਿਦੰਦਾ ਹ,ੈ ਜੋ ਗਲਤੀਆਂ ਨੰੂ ਸੰਭਾਲ ਕ ੇਪ�ੋਗਰਾਮ ਦੀ ਭਰੋਸਯੇੋਗਤਾ ਵਧਾ�ਦਾ

ਹ ੈਅਤ ੇਅਚਾਨਕ ਬੰਦ ਹੋਣ ਤ� ਬਚਾ�ਦਾ ਹ।ੈ

Q. What is the difference between an Object and a Class? What are the various access specifiers in C++?
Write a program to demonstrate working of different access specifiers. (Nov 22)
Ans. Difference Between Object and Class:

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 40

 A Class is a blueprint or template that defines the properƟes (data members) and behaviors
(member funcƟons) common to all objects of that type.

 An Object is an instance of a class. It represents a specific enƟty with actual values stored in
memory.

Access Specifiers in C++:
C++ provides three access specifiers to control visibility of class members:

1. Public: Members are accessible from anywhere.
2. Private: Members are accessible only within the class.
3. Protected: Members are accessible within the class and by derived classes.

Program DemonstraƟng Access Specifiers:
#include <iostream>
using namespace std;

class Demo {
public:
 int publicVar = 1;

private:
 int privateVar = 2;

protected:
 int protectedVar = 3;

public:
 void show() {
 cout << "Public: " << publicVar << endl;
 cout << "Private: " << privateVar << endl;
 cout << "Protected: " << protectedVar << endl;
 }
};

int main() {
 Demo obj;

 // Accessing public member directly
 cout << "Public: " << obj.publicVar << endl;

 // Accessing private or protected members directly causes error
 // cout << obj.privateVar; // Error
 // cout << obj.protectedVar; // Error

 obj.show(); // Access all members inside class method

 return 0;
}

This program shows that only public members are accessible outside the class, while private and
protected members can only be accessed within class methods or derived classes.
ਵਸਤੂ (Object) ਅਤ ੇਕਲਾਸ (Class) ਿਵੱਚ ਅੰਤਰ:

ਕਲਾਸ (Class): ਕਲਾਸ ਇੱਕ ਨਕ©ਾ ਜ� ਟ�ਪਲੇਟ ਹੁੰ ਦੀ ਹ ੈਜੋ ਿਕਸ ੇਿਕਸਮ ਦੀਆ ਂਸਾਰੀਆਂ ਵਸਤਆੂ ਂ(objects) ਲਈ ਆਮ ਗੁਣ

(ਡਾਟਾ ਮ�ਬਰ) ਅਤ ੇਿਵਹਾਰ (ਮੈਥਡ) ਨੰੂ ਪਿਰਭਾਿ©ਤ ਕਰਦੀ ਹ।ੈ

GIMT COLLEGE BUDHLADA | PROGRAMMING FUNDAMENTALS IN C++ 41

ਵਸਤੂ (Object): ਵਸਤ ੂਕਲਾਸ ਦੀ ਇੱਕ ਨਮੂਨਾ (instance) ਹੁੰ ਦੀ ਹ।ੈ ਇਹ ਇੱਕ ਿਵਸ਼©ੇ ਏਨਟੀਟੀ ਹ ੈਿਜਸ ਿਵੱਚ ਅਸਲੀ ਕਦਰ�

ਮੈਮੋਰੀ ਿਵੱਚ ਸਟੋਰ ਹੁੰ ਦੀਆ ਂਹਨ।

C++ ਿਵੱਚ Access Specifiers (ਪਹੰੁਚ ਿਨਰਧਾਰਕ):

C++ ਿਤੰਨ ਪ�ਕਾਰ ਦ ੇaccess specifiers ਿਦੰਦਾ ਹ ੈਜੋ ਕਲਾਸ ਮ�ਬਰ� ਦੀ ਪਹੁੰ ਚ ਨੰੂ ਿਨਯੰਤਿਰਤ ਕਰਦ ੇਹਨ:

 Public: ਮ�ਬਰ� ਨੰੂ ਿਕਤ ੇਵੀ ਪਹੁੰ ਚ ਿਮਲ ਸਕਦੀ ਹ।ੈ

 Private: ਮ�ਬਰ ਿਸਰਫ਼ ਕਲਾਸ ਦ ੇਅੰਦਰ ਹੀ ਪਹੁੰ ਚਯੋਗ ਹੁੰ ਦੇ ਹਨ।

 Protected: ਮ�ਬਰ ਕਲਾਸ ਅਤ ੇਉਸ ਦੀਆ ਂderived ਕਲਾਸ� ਿਵੱਚ ਪਹੁੰ ਚਯੋਗ ਹੁੰ ਦ ੇਹਨ।

Access Specifiers ਦਾ ਪ�ੋਗਰਾਮ:

#include <iostream>
using namespace std;

class Demo {
public:
 int publicVar = 1;

private:
 int privateVar = 2;

protected:
 int protectedVar = 3;

public:
 void show() {
 cout << "Public: " << publicVar << endl;
 cout << "Private: " << privateVar << endl;
 cout << "Protected: " << protectedVar << endl;
 }
};

int main() {
 Demo obj;
 // Public ਮ�ਬਰ ਨੰੂ ਿਸੱਧਾ ਐਕਸ{ੈਸ ਕਰਨਾ
 cout << "Public: " << obj.publicVar << endl;

 // Private ਜ� Protected ਮ�ਬਰ� ਨੰੂ ਿਸੱਧਾ ਐਕਸ{ੈਸ ਕਰਨ ‘ਤੇ Error ਆਵੇਗਾ
 // cout << obj.privateVar; // Error
 // cout << obj.protectedVar; // Error

 obj.show(); // ਕਲਾਸ ਦੇ ਮਥੈਡ ਿਵੱਚ ਸਾਰ ੇਮ�ਬਰ� ਨੰੂ ਐਕਸ{ੈਸ ਕਰਨਾ
 return 0;
}

ਨਤੀਜਾ: ਇਸ ਪ�ੋਗਰਾਮ ਿਵੱਚ ਿਦਖਾਇਆ ਿਗਆ ਹ ੈਿਕ ਿਸਰਫ public ਮ�ਬਰ� ਨੰੂ ਕਲਾਸ ਤ� ਬਾਹਰ ਿਸੱਧਾ ਐਕਸ{ੈਸ ਕੀਤਾ ਜਾ

ਸਕਦਾ ਹ,ੈ ਜਦਿਕ private ਅਤ ੇprotected ਮ�ਬਰ� ਨੰੂ ਿਸਰਫ ਕਲਾਸ ਦੇ ਅੰਦਰ ਜ� derived ਕਲਾਸ� ਿਵੱਚ ਹੀ ਪਹੁੰ ਚ ਿਮਲਦੀ

ਹ।ੈ

